V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
regexp-macro-assembler-arm64.h
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
6 #define V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
7 
8 #include "src/arm64/assembler-arm64.h"
9 #include "src/macro-assembler.h"
10 #include "src/regexp/regexp-macro-assembler.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 
16 #ifndef V8_INTERPRETED_REGEXP
18  public:
19  RegExpMacroAssemblerARM64(Isolate* isolate, Zone* zone, Mode mode,
20  int registers_to_save);
21  virtual ~RegExpMacroAssemblerARM64();
22  virtual void AbortedCodeGeneration() { masm_->AbortedCodeGeneration(); }
23  virtual int stack_limit_slack();
24  virtual void AdvanceCurrentPosition(int by);
25  virtual void AdvanceRegister(int reg, int by);
26  virtual void Backtrack();
27  virtual void Bind(Label* label);
28  virtual void CheckAtStart(Label* on_at_start);
29  virtual void CheckCharacter(unsigned c, Label* on_equal);
30  virtual void CheckCharacterAfterAnd(unsigned c,
31  unsigned mask,
32  Label* on_equal);
33  virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
34  virtual void CheckCharacterLT(uc16 limit, Label* on_less);
35  virtual void CheckCharacters(Vector<const uc16> str,
36  int cp_offset,
37  Label* on_failure,
38  bool check_end_of_string);
39  // A "greedy loop" is a loop that is both greedy and with a simple
40  // body. It has a particularly simple implementation.
41  virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
42  virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
43  virtual void CheckNotBackReference(int start_reg, bool read_backward,
44  Label* on_no_match);
45  virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
46  bool read_backward, bool unicode,
47  Label* on_no_match);
48  virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
49  virtual void CheckNotCharacterAfterAnd(unsigned c,
50  unsigned mask,
51  Label* on_not_equal);
52  virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
53  uc16 minus,
54  uc16 mask,
55  Label* on_not_equal);
56  virtual void CheckCharacterInRange(uc16 from,
57  uc16 to,
58  Label* on_in_range);
59  virtual void CheckCharacterNotInRange(uc16 from,
60  uc16 to,
61  Label* on_not_in_range);
62  virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
63 
64  // Checks whether the given offset from the current position is before
65  // the end of the string.
66  virtual void CheckPosition(int cp_offset, Label* on_outside_input);
67  virtual bool CheckSpecialCharacterClass(uc16 type,
68  Label* on_no_match);
69  virtual void Fail();
70  virtual Handle<HeapObject> GetCode(Handle<String> source);
71  virtual void GoTo(Label* label);
72  virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
73  virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
74  virtual void IfRegisterEqPos(int reg, Label* if_eq);
75  virtual IrregexpImplementation Implementation();
76  virtual void LoadCurrentCharacter(int cp_offset,
77  Label* on_end_of_input,
78  bool check_bounds = true,
79  int characters = 1);
80  virtual void PopCurrentPosition();
81  virtual void PopRegister(int register_index);
82  virtual void PushBacktrack(Label* label);
83  virtual void PushCurrentPosition();
84  virtual void PushRegister(int register_index,
85  StackCheckFlag check_stack_limit);
86  virtual void ReadCurrentPositionFromRegister(int reg);
87  virtual void ReadStackPointerFromRegister(int reg);
88  virtual void SetCurrentPositionFromEnd(int by);
89  virtual void SetRegister(int register_index, int to);
90  virtual bool Succeed();
91  virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
92  virtual void ClearRegisters(int reg_from, int reg_to);
93  virtual void WriteStackPointerToRegister(int reg);
94 
95  // Called from RegExp if the stack-guard is triggered.
96  // If the code object is relocated, the return address is fixed before
97  // returning.
98  // {raw_code} is an Address because this is called via ExternalReference.
99  static int CheckStackGuardState(Address* return_address, Address raw_code,
100  Address re_frame, int start_offset,
101  const byte** input_start,
102  const byte** input_end);
103 
104  private:
105  // Above the frame pointer - Stored registers and stack passed parameters.
106  // Callee-saved registers x19-x29, where x29 is the old frame pointer.
107  static const int kCalleeSavedRegisters = 0;
108  // Return address.
109  // It is placed above the 11 callee-saved registers.
110  static const int kReturnAddress = kCalleeSavedRegisters + 11 * kPointerSize;
111  // Stack parameter placed by caller.
112  static const int kIsolate = kReturnAddress + kPointerSize;
113 
114  // Below the frame pointer.
115  // Register parameters stored by setup code.
116  static const int kDirectCall = kCalleeSavedRegisters - kPointerSize;
117  static const int kStackBase = kDirectCall - kPointerSize;
118  static const int kOutputSize = kStackBase - kPointerSize;
119  static const int kInput = kOutputSize - kPointerSize;
120  // When adding local variables remember to push space for them in
121  // the frame in GetCode.
122  static const int kSuccessCounter = kInput - kPointerSize;
123  // First position register address on the stack. Following positions are
124  // below it. A position is a 32 bit value.
125  static const int kFirstRegisterOnStack = kSuccessCounter - kWRegSize;
126  // A capture is a 64 bit value holding two position.
127  static const int kFirstCaptureOnStack = kSuccessCounter - kXRegSize;
128 
129  // Initial size of code buffer.
130  static const size_t kRegExpCodeSize = 1024;
131 
132  // When initializing registers to a non-position value we can unroll
133  // the loop. Set the limit of registers to unroll.
134  static const int kNumRegistersToUnroll = 16;
135 
136  // We are using x0 to x7 as a register cache. Each hardware register must
137  // contain one capture, that is two 32 bit registers. We can cache at most
138  // 16 registers.
139  static const int kNumCachedRegisters = 16;
140 
141  // Load a number of characters at the given offset from the
142  // current position, into the current-character register.
143  void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
144 
145  // Check whether preemption has been requested.
146  void CheckPreemption();
147 
148  // Check whether we are exceeding the stack limit on the backtrack stack.
149  void CheckStackLimit();
150 
151  // Generate a call to CheckStackGuardState.
152  void CallCheckStackGuardState(Register scratch);
153 
154  // Location of a 32 bit position register.
155  MemOperand register_location(int register_index);
156 
157  // Location of a 64 bit capture, combining two position registers.
158  MemOperand capture_location(int register_index, Register scratch);
159 
160  // Register holding the current input position as negative offset from
161  // the end of the string.
162  Register current_input_offset() { return w21; }
163 
164  // The register containing the current character after LoadCurrentCharacter.
165  Register current_character() { return w22; }
166 
167  // Register holding address of the end of the input string.
168  Register input_end() { return x25; }
169 
170  // Register holding address of the start of the input string.
171  Register input_start() { return x26; }
172 
173  // Register holding the offset from the start of the string where we should
174  // start matching.
175  Register start_offset() { return w27; }
176 
177  // Pointer to the output array's first element.
178  Register output_array() { return x28; }
179 
180  // Register holding the frame address. Local variables, parameters and
181  // regexp registers are addressed relative to this.
182  Register frame_pointer() { return fp; }
183 
184  // The register containing the backtrack stack top. Provides a meaningful
185  // name to the register.
186  Register backtrack_stackpointer() { return x23; }
187 
188  // Register holding pointer to the current code object.
189  Register code_pointer() { return x20; }
190 
191  // Register holding the value used for clearing capture registers.
192  Register string_start_minus_one() { return w24; }
193  // The top 32 bit of this register is used to store this value
194  // twice. This is used for clearing more than one register at a time.
195  Register twice_non_position_value() { return x24; }
196 
197  // Byte size of chars in the string to match (decided by the Mode argument)
198  int char_size() { return static_cast<int>(mode_); }
199 
200  // Equivalent to a conditional branch to the label, unless the label
201  // is nullptr, in which case it is a conditional Backtrack.
202  void BranchOrBacktrack(Condition condition, Label* to);
203 
204  // Compares reg against immmediate before calling BranchOrBacktrack.
205  // It makes use of the Cbz and Cbnz instructions.
206  void CompareAndBranchOrBacktrack(Register reg,
207  int immediate,
208  Condition condition,
209  Label* to);
210 
211  inline void CallIf(Label* to, Condition condition);
212 
213  // Save and restore the link register on the stack in a way that
214  // is GC-safe.
215  inline void SaveLinkRegister();
216  inline void RestoreLinkRegister();
217 
218  // Pushes the value of a register on the backtrack stack. Decrements the
219  // stack pointer by a word size and stores the register's value there.
220  inline void Push(Register source);
221 
222  // Pops a value from the backtrack stack. Reads the word at the stack pointer
223  // and increments it by a word size.
224  inline void Pop(Register target);
225 
226  // This state indicates where the register actually is.
227  enum RegisterState {
228  STACKED, // Resides in memory.
229  CACHED_LSW, // Least Significant Word of a 64 bit hardware register.
230  CACHED_MSW // Most Significant Word of a 64 bit hardware register.
231  };
232 
233  RegisterState GetRegisterState(int register_index) {
234  DCHECK_LE(0, register_index);
235  if (register_index >= kNumCachedRegisters) {
236  return STACKED;
237  } else {
238  if ((register_index % 2) == 0) {
239  return CACHED_LSW;
240  } else {
241  return CACHED_MSW;
242  }
243  }
244  }
245 
246  // Store helper that takes the state of the register into account.
247  inline void StoreRegister(int register_index, Register source);
248 
249  // Returns a hardware W register that holds the value of the capture
250  // register.
251  //
252  // This function will try to use an existing cache register (w0-w7) for the
253  // result. Otherwise, it will load the value into maybe_result.
254  //
255  // If the returned register is anything other than maybe_result, calling code
256  // must not write to it.
257  inline Register GetRegister(int register_index, Register maybe_result);
258 
259  // Returns the harware register (x0-x7) holding the value of the capture
260  // register.
261  // This assumes that the state of the register is not STACKED.
262  inline Register GetCachedRegister(int register_index);
263 
264  Isolate* isolate() const { return masm_->isolate(); }
265 
266  MacroAssembler* masm_;
267 
268  // Which mode to generate code for (LATIN1 or UC16).
269  Mode mode_;
270 
271  // One greater than maximal register index actually used.
272  int num_registers_;
273 
274  // Number of registers to output at the end (the saved registers
275  // are always 0..num_saved_registers_-1)
276  int num_saved_registers_;
277 
278  // Labels used internally.
279  Label entry_label_;
280  Label start_label_;
281  Label success_label_;
282  Label backtrack_label_;
283  Label exit_label_;
284  Label check_preempt_label_;
285  Label stack_overflow_label_;
286 };
287 
288 #endif // V8_INTERPRETED_REGEXP
289 
290 
291 } // namespace internal
292 } // namespace v8
293 
294 #endif // V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
Definition: libplatform.h:13