V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
fixed-dtoa.cc
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <stdint.h>
6 
7 #include <cmath>
8 
9 #include "src/base/logging.h"
10 #include "src/utils.h"
11 
12 #include "src/double.h"
13 #include "src/fixed-dtoa.h"
14 
15 namespace v8 {
16 namespace internal {
17 
18 // Represents a 128bit type. This class should be replaced by a native type on
19 // platforms that support 128bit integers.
20 class UInt128 {
21  public:
22  UInt128() : high_bits_(0), low_bits_(0) { }
23  UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
24 
25  void Multiply(uint32_t multiplicand) {
26  uint64_t accumulator;
27 
28  accumulator = (low_bits_ & kMask32) * multiplicand;
29  uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
30  accumulator >>= 32;
31  accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
32  low_bits_ = (accumulator << 32) + part;
33  accumulator >>= 32;
34  accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
35  part = static_cast<uint32_t>(accumulator & kMask32);
36  accumulator >>= 32;
37  accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
38  high_bits_ = (accumulator << 32) + part;
39  DCHECK_EQ(accumulator >> 32, 0);
40  }
41 
42  void Shift(int shift_amount) {
43  DCHECK(-64 <= shift_amount && shift_amount <= 64);
44  if (shift_amount == 0) {
45  return;
46  } else if (shift_amount == -64) {
47  high_bits_ = low_bits_;
48  low_bits_ = 0;
49  } else if (shift_amount == 64) {
50  low_bits_ = high_bits_;
51  high_bits_ = 0;
52  } else if (shift_amount <= 0) {
53  high_bits_ <<= -shift_amount;
54  high_bits_ += low_bits_ >> (64 + shift_amount);
55  low_bits_ <<= -shift_amount;
56  } else {
57  low_bits_ >>= shift_amount;
58  low_bits_ += high_bits_ << (64 - shift_amount);
59  high_bits_ >>= shift_amount;
60  }
61  }
62 
63  // Modifies *this to *this MOD (2^power).
64  // Returns *this DIV (2^power).
65  int DivModPowerOf2(int power) {
66  if (power >= 64) {
67  int result = static_cast<int>(high_bits_ >> (power - 64));
68  high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
69  return result;
70  } else {
71  uint64_t part_low = low_bits_ >> power;
72  uint64_t part_high = high_bits_ << (64 - power);
73  int result = static_cast<int>(part_low + part_high);
74  high_bits_ = 0;
75  low_bits_ -= part_low << power;
76  return result;
77  }
78  }
79 
80  bool IsZero() const {
81  return high_bits_ == 0 && low_bits_ == 0;
82  }
83 
84  int BitAt(int position) {
85  if (position >= 64) {
86  return static_cast<int>(high_bits_ >> (position - 64)) & 1;
87  } else {
88  return static_cast<int>(low_bits_ >> position) & 1;
89  }
90  }
91 
92  private:
93  static const uint64_t kMask32 = 0xFFFFFFFF;
94  // Value == (high_bits_ << 64) + low_bits_
95  uint64_t high_bits_;
96  uint64_t low_bits_;
97 };
98 
99 
100 static const int kDoubleSignificandSize = 53; // Includes the hidden bit.
101 
102 
103 static void FillDigits32FixedLength(uint32_t number, int requested_length,
104  Vector<char> buffer, int* length) {
105  for (int i = requested_length - 1; i >= 0; --i) {
106  buffer[(*length) + i] = '0' + number % 10;
107  number /= 10;
108  }
109  *length += requested_length;
110 }
111 
112 
113 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
114  int number_length = 0;
115  // We fill the digits in reverse order and exchange them afterwards.
116  while (number != 0) {
117  int digit = number % 10;
118  number /= 10;
119  buffer[(*length) + number_length] = '0' + digit;
120  number_length++;
121  }
122  // Exchange the digits.
123  int i = *length;
124  int j = *length + number_length - 1;
125  while (i < j) {
126  char tmp = buffer[i];
127  buffer[i] = buffer[j];
128  buffer[j] = tmp;
129  i++;
130  j--;
131  }
132  *length += number_length;
133 }
134 
135 
136 static void FillDigits64FixedLength(uint64_t number, int requested_length,
137  Vector<char> buffer, int* length) {
138  const uint32_t kTen7 = 10000000;
139  // For efficiency cut the number into 3 uint32_t parts, and print those.
140  uint32_t part2 = static_cast<uint32_t>(number % kTen7);
141  number /= kTen7;
142  uint32_t part1 = static_cast<uint32_t>(number % kTen7);
143  uint32_t part0 = static_cast<uint32_t>(number / kTen7);
144 
145  FillDigits32FixedLength(part0, 3, buffer, length);
146  FillDigits32FixedLength(part1, 7, buffer, length);
147  FillDigits32FixedLength(part2, 7, buffer, length);
148 }
149 
150 
151 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
152  const uint32_t kTen7 = 10000000;
153  // For efficiency cut the number into 3 uint32_t parts, and print those.
154  uint32_t part2 = static_cast<uint32_t>(number % kTen7);
155  number /= kTen7;
156  uint32_t part1 = static_cast<uint32_t>(number % kTen7);
157  uint32_t part0 = static_cast<uint32_t>(number / kTen7);
158 
159  if (part0 != 0) {
160  FillDigits32(part0, buffer, length);
161  FillDigits32FixedLength(part1, 7, buffer, length);
162  FillDigits32FixedLength(part2, 7, buffer, length);
163  } else if (part1 != 0) {
164  FillDigits32(part1, buffer, length);
165  FillDigits32FixedLength(part2, 7, buffer, length);
166  } else {
167  FillDigits32(part2, buffer, length);
168  }
169 }
170 
171 static void DtoaRoundUp(Vector<char> buffer, int* length, int* decimal_point) {
172  // An empty buffer represents 0.
173  if (*length == 0) {
174  buffer[0] = '1';
175  *decimal_point = 1;
176  *length = 1;
177  return;
178  }
179  // Round the last digit until we either have a digit that was not '9' or until
180  // we reached the first digit.
181  buffer[(*length) - 1]++;
182  for (int i = (*length) - 1; i > 0; --i) {
183  if (buffer[i] != '0' + 10) {
184  return;
185  }
186  buffer[i] = '0';
187  buffer[i - 1]++;
188  }
189  // If the first digit is now '0' + 10, we would need to set it to '0' and add
190  // a '1' in front. However we reach the first digit only if all following
191  // digits had been '9' before rounding up. Now all trailing digits are '0' and
192  // we simply switch the first digit to '1' and update the decimal-point
193  // (indicating that the point is now one digit to the right).
194  if (buffer[0] == '0' + 10) {
195  buffer[0] = '1';
196  (*decimal_point)++;
197  }
198 }
199 
200 
201 // The given fractionals number represents a fixed-point number with binary
202 // point at bit (-exponent).
203 // Preconditions:
204 // -128 <= exponent <= 0.
205 // 0 <= fractionals * 2^exponent < 1
206 // The buffer holds the result.
207 // The function will round its result. During the rounding-process digits not
208 // generated by this function might be updated, and the decimal-point variable
209 // might be updated. If this function generates the digits 99 and the buffer
210 // already contained "199" (thus yielding a buffer of "19999") then a
211 // rounding-up will change the contents of the buffer to "20000".
212 static void FillFractionals(uint64_t fractionals, int exponent,
213  int fractional_count, Vector<char> buffer,
214  int* length, int* decimal_point) {
215  DCHECK(-128 <= exponent && exponent <= 0);
216  // 'fractionals' is a fixed-point number, with binary point at bit
217  // (-exponent). Inside the function the non-converted remainder of fractionals
218  // is a fixed-point number, with binary point at bit 'point'.
219  if (-exponent <= 64) {
220  // One 64 bit number is sufficient.
221  DCHECK_EQ(fractionals >> 56, 0);
222  int point = -exponent;
223  for (int i = 0; i < fractional_count; ++i) {
224  if (fractionals == 0) break;
225  // Instead of multiplying by 10 we multiply by 5 and adjust the point
226  // location. This way the fractionals variable will not overflow.
227  // Invariant at the beginning of the loop: fractionals < 2^point.
228  // Initially we have: point <= 64 and fractionals < 2^56
229  // After each iteration the point is decremented by one.
230  // Note that 5^3 = 125 < 128 = 2^7.
231  // Therefore three iterations of this loop will not overflow fractionals
232  // (even without the subtraction at the end of the loop body). At this
233  // time point will satisfy point <= 61 and therefore fractionals < 2^point
234  // and any further multiplication of fractionals by 5 will not overflow.
235  fractionals *= 5;
236  point--;
237  int digit = static_cast<int>(fractionals >> point);
238  buffer[*length] = '0' + digit;
239  (*length)++;
240  fractionals -= static_cast<uint64_t>(digit) << point;
241  }
242  // If the first bit after the point is set we have to round up.
243  if (((fractionals >> (point - 1)) & 1) == 1) {
244  DtoaRoundUp(buffer, length, decimal_point);
245  }
246  } else { // We need 128 bits.
247  DCHECK(64 < -exponent && -exponent <= 128);
248  UInt128 fractionals128 = UInt128(fractionals, 0);
249  fractionals128.Shift(-exponent - 64);
250  int point = 128;
251  for (int i = 0; i < fractional_count; ++i) {
252  if (fractionals128.IsZero()) break;
253  // As before: instead of multiplying by 10 we multiply by 5 and adjust the
254  // point location.
255  // This multiplication will not overflow for the same reasons as before.
256  fractionals128.Multiply(5);
257  point--;
258  int digit = fractionals128.DivModPowerOf2(point);
259  buffer[*length] = '0' + digit;
260  (*length)++;
261  }
262  if (fractionals128.BitAt(point - 1) == 1) {
263  DtoaRoundUp(buffer, length, decimal_point);
264  }
265  }
266 }
267 
268 
269 // Removes leading and trailing zeros.
270 // If leading zeros are removed then the decimal point position is adjusted.
271 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
272  while (*length > 0 && buffer[(*length) - 1] == '0') {
273  (*length)--;
274  }
275  int first_non_zero = 0;
276  while (first_non_zero < *length && buffer[first_non_zero] == '0') {
277  first_non_zero++;
278  }
279  if (first_non_zero != 0) {
280  for (int i = first_non_zero; i < *length; ++i) {
281  buffer[i - first_non_zero] = buffer[i];
282  }
283  *length -= first_non_zero;
284  *decimal_point -= first_non_zero;
285  }
286 }
287 
288 
289 bool FastFixedDtoa(double v,
290  int fractional_count,
291  Vector<char> buffer,
292  int* length,
293  int* decimal_point) {
294  const uint32_t kMaxUInt32 = 0xFFFFFFFF;
295  uint64_t significand = Double(v).Significand();
296  int exponent = Double(v).Exponent();
297  // v = significand * 2^exponent (with significand a 53bit integer).
298  // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
299  // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
300  // If necessary this limit could probably be increased, but we don't need
301  // more.
302  if (exponent > 20) return false;
303  if (fractional_count > 20) return false;
304  *length = 0;
305  // At most kDoubleSignificandSize bits of the significand are non-zero.
306  // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
307  // bits: 0..11*..0xxx..53*..xx
308  if (exponent + kDoubleSignificandSize > 64) {
309  // The exponent must be > 11.
310  //
311  // We know that v = significand * 2^exponent.
312  // And the exponent > 11.
313  // We simplify the task by dividing v by 10^17.
314  // The quotient delivers the first digits, and the remainder fits into a 64
315  // bit number.
316  // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
317  const uint64_t kFive17 = V8_2PART_UINT64_C(0xB1, A2BC2EC5); // 5^17
318  uint64_t divisor = kFive17;
319  int divisor_power = 17;
320  uint64_t dividend = significand;
321  uint32_t quotient;
322  uint64_t remainder;
323  // Let v = f * 2^e with f == significand and e == exponent.
324  // Then need q (quotient) and r (remainder) as follows:
325  // v = q * 10^17 + r
326  // f * 2^e = q * 10^17 + r
327  // f * 2^e = q * 5^17 * 2^17 + r
328  // If e > 17 then
329  // f * 2^(e-17) = q * 5^17 + r/2^17
330  // else
331  // f = q * 5^17 * 2^(17-e) + r/2^e
332  if (exponent > divisor_power) {
333  // We only allow exponents of up to 20 and therefore (17 - e) <= 3
334  dividend <<= exponent - divisor_power;
335  quotient = static_cast<uint32_t>(dividend / divisor);
336  remainder = (dividend % divisor) << divisor_power;
337  } else {
338  divisor <<= divisor_power - exponent;
339  quotient = static_cast<uint32_t>(dividend / divisor);
340  remainder = (dividend % divisor) << exponent;
341  }
342  FillDigits32(quotient, buffer, length);
343  FillDigits64FixedLength(remainder, divisor_power, buffer, length);
344  *decimal_point = *length;
345  } else if (exponent >= 0) {
346  // 0 <= exponent <= 11
347  significand <<= exponent;
348  FillDigits64(significand, buffer, length);
349  *decimal_point = *length;
350  } else if (exponent > -kDoubleSignificandSize) {
351  // We have to cut the number.
352  uint64_t integrals = significand >> -exponent;
353  uint64_t fractionals = significand - (integrals << -exponent);
354  if (integrals > kMaxUInt32) {
355  FillDigits64(integrals, buffer, length);
356  } else {
357  FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
358  }
359  *decimal_point = *length;
360  FillFractionals(fractionals, exponent, fractional_count,
361  buffer, length, decimal_point);
362  } else if (exponent < -128) {
363  // This configuration (with at most 20 digits) means that all digits must be
364  // 0.
365  DCHECK_LE(fractional_count, 20);
366  buffer[0] = '\0';
367  *length = 0;
368  *decimal_point = -fractional_count;
369  } else {
370  *decimal_point = 0;
371  FillFractionals(significand, exponent, fractional_count,
372  buffer, length, decimal_point);
373  }
374  TrimZeros(buffer, length, decimal_point);
375  buffer[*length] = '\0';
376  if ((*length) == 0) {
377  // The string is empty and the decimal_point thus has no importance. Mimick
378  // Gay's dtoa and and set it to -fractional_count.
379  *decimal_point = -fractional_count;
380  }
381  return true;
382 }
383 
384 } // namespace internal
385 } // namespace v8
Definition: libplatform.h:13