V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
earley-parser.h
1 // Copyright 2018 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_TORQUE_EARLEY_PARSER_H_
6 #define V8_TORQUE_EARLEY_PARSER_H_
7 
8 #include <map>
9 #include <vector>
10 
11 #include "src/base/optional.h"
12 #include "src/torque/contextual.h"
13 #include "src/torque/source-positions.h"
14 #include "src/torque/utils.h"
15 
16 namespace v8 {
17 namespace internal {
18 namespace torque {
19 
20 class Symbol;
21 class Item;
22 
24  public:
25  enum class TypeId;
26  virtual ~ParseResultHolderBase() = default;
27  template <class T>
28  T& Cast();
29  template <class T>
30  const T& Cast() const;
31 
32  protected:
33  explicit ParseResultHolderBase(TypeId type_id) : type_id_(type_id) {
34  // MSVC wrongly complains about type_id_ being an unused private field.
35  USE(type_id_);
36  }
37 
38  private:
39  const TypeId type_id_;
40 };
41 
42 using ParseResultTypeId = ParseResultHolderBase::TypeId;
43 
44 template <class T>
46  public:
47  explicit ParseResultHolder(T value)
48  : ParseResultHolderBase(id), value_(std::move(value)) {}
49 
50  private:
51  V8_EXPORT_PRIVATE static const TypeId id;
52  friend class ParseResultHolderBase;
53  T value_;
54 };
55 
56 template <class T>
57 T& ParseResultHolderBase::Cast() {
58  CHECK_EQ(ParseResultHolder<T>::id, type_id_);
59  return static_cast<ParseResultHolder<T>*>(this)->value_;
60 }
61 
62 template <class T>
63 const T& ParseResultHolderBase::Cast() const {
64  CHECK_EQ(ParseResultHolder<T>::id, type_id_);
65  return static_cast<const ParseResultHolder<T>*>(this)->value_;
66 }
67 
68 class ParseResult {
69  public:
70  template <class T>
71  explicit ParseResult(T x) : value_(new ParseResultHolder<T>(std::move(x))) {}
72 
73  template <class T>
74  const T& Cast() const {
75  return value_->Cast<T>();
76  }
77  template <class T>
78  T& Cast() {
79  return value_->Cast<T>();
80  }
81 
82  private:
83  std::unique_ptr<ParseResultHolderBase> value_;
84 };
85 
86 using InputPosition = const char*;
87 
88 struct MatchedInput {
90  : begin(begin), end(end), pos(pos) {}
91  InputPosition begin;
92  InputPosition end;
93  SourcePosition pos;
94  std::string ToString() const { return {begin, end}; }
95 };
96 
98  public:
99  explicit ParseResultIterator(std::vector<ParseResult> results,
100  MatchedInput matched_input)
101  : results_(std::move(results)), matched_input_(matched_input) {}
103  // Check that all parse results have been used.
104  CHECK_EQ(results_.size(), i_);
105  }
106 
107  ParseResult Next() {
108  CHECK_LT(i_, results_.size());
109  return std::move(results_[i_++]);
110  }
111  template <class T>
112  T NextAs() {
113  return std::move(Next().Cast<T>());
114  }
115  bool HasNext() const { return i_ < results_.size(); }
116 
117  const MatchedInput& matched_input() const { return matched_input_; }
118 
119  private:
120  std::vector<ParseResult> results_;
121  size_t i_ = 0;
122  MatchedInput matched_input_;
123 
124  DISALLOW_COPY_AND_MOVE_AND_ASSIGN(ParseResultIterator);
125 };
126 
127 struct LexerResult {
128  std::vector<Symbol*> token_symbols;
129  std::vector<MatchedInput> token_contents;
130 };
131 
132 using Action =
134 
135 inline base::Optional<ParseResult> DefaultAction(
136  ParseResultIterator* child_results) {
137  if (!child_results->HasNext()) return base::nullopt;
138  return child_results->Next();
139 }
140 
141 // A rule of the context-free grammar. Each rule can have an action attached to
142 // it, which is executed after the parsing is finished.
143 class Rule final {
144  public:
145  explicit Rule(std::vector<Symbol*> right_hand_side,
146  Action action = DefaultAction)
147  : right_hand_side_(std::move(right_hand_side)), action_(action) {}
148 
149  Symbol* left() const {
150  DCHECK_NOT_NULL(left_hand_side_);
151  return left_hand_side_;
152  }
153  const std::vector<Symbol*>& right() const { return right_hand_side_; }
154 
155  void SetLeftHandSide(Symbol* left_hand_side) {
156  DCHECK_NULL(left_hand_side_);
157  left_hand_side_ = left_hand_side;
158  }
159 
160  V8_EXPORT_PRIVATE base::Optional<ParseResult> RunAction(
161  const Item* completed_item, const LexerResult& tokens) const;
162 
163  private:
164  Symbol* left_hand_side_ = nullptr;
165  std::vector<Symbol*> right_hand_side_;
166  Action action_;
167 };
168 
169 // A Symbol represents a terminal or a non-terminal of the grammar.
170 // It stores the list of rules, which have this symbol as the
171 // left-hand side.
172 // Terminals have an empty list of rules, they are created by the Lexer
173 // instead of from rules.
174 // Symbols need to reside at stable memory addresses, because the addresses are
175 // used in the parser.
176 class Symbol {
177  public:
178  Symbol() : Symbol({}) {}
179  Symbol(std::initializer_list<Rule> rules) { *this = rules; }
180 
181  V8_EXPORT_PRIVATE Symbol& operator=(std::initializer_list<Rule> rules);
182 
183  bool IsTerminal() const { return rules_.empty(); }
184  Rule* rule(size_t index) const { return rules_[index].get(); }
185  size_t rule_number() const { return rules_.size(); }
186 
187  void AddRule(const Rule& rule) {
188  rules_.push_back(base::make_unique<Rule>(rule));
189  rules_.back()->SetLeftHandSide(this);
190  }
191 
192  V8_EXPORT_PRIVATE base::Optional<ParseResult> RunAction(
193  const Item* item, const LexerResult& tokens);
194 
195  private:
196  std::vector<std::unique_ptr<Rule>> rules_;
197 
198  // Disallow copying and moving to ensure Symbol has a stable address.
199  DISALLOW_COPY_AND_MOVE_AND_ASSIGN(Symbol);
200 };
201 
202 // Items are the core datastructure of Earley's algorithm.
203 // They consist of a (partially) matched rule, a marked position inside of the
204 // right-hand side of the rule (traditionally written as a dot) and an input
205 // range from {start} to {pos} that matches the symbols of the right-hand side
206 // that are left of the mark. In addition, they store a child and a left-sibling
207 // pointer to reconstruct the AST in the end.
208 class Item {
209  public:
210  Item(const Rule* rule, size_t mark, size_t start, size_t pos)
211  : rule_(rule), mark_(mark), start_(start), pos_(pos) {
212  DCHECK_LE(mark_, right().size());
213  }
214 
215  // A complete item has the mark at the right end, which means the input range
216  // matches the complete rule.
217  bool IsComplete() const {
218  DCHECK_LE(mark_, right().size());
219  return mark_ == right().size();
220  }
221 
222  // The symbol right after the mark is expected at {pos} for this item to
223  // advance.
224  Symbol* NextSymbol() const {
225  DCHECK(!IsComplete());
226  DCHECK_LT(mark_, right().size());
227  return right()[mark_];
228  }
229 
230  // We successfully parsed NextSymbol() between {pos} and {new_pos}.
231  // If NextSymbol() was a non-terminal, then {child} is a pointer to a
232  // completed item for this parse.
233  // We create a new item, which moves the mark one forward.
234  Item Advance(size_t new_pos, const Item* child = nullptr) const {
235  if (child) {
236  DCHECK(child->IsComplete());
237  DCHECK_EQ(pos(), child->start());
238  DCHECK_EQ(new_pos, child->pos());
239  DCHECK_EQ(NextSymbol(), child->left());
240  }
241  Item result(rule_, mark_ + 1, start_, new_pos);
242  result.prev_ = this;
243  result.child_ = child;
244  return result;
245  }
246 
247  // Collect the items representing the AST children of this completed item.
248  std::vector<const Item*> Children() const;
249  // The matched input separated according to the next branching AST level.
250  std::string SplitByChildren(const LexerResult& tokens) const;
251  // Check if {other} results in the same AST as this Item.
252  void CheckAmbiguity(const Item& other, const LexerResult& tokens) const;
253 
254  MatchedInput GetMatchedInput(const LexerResult& tokens) const {
255  return {tokens.token_contents[start_].begin,
256  start_ == pos_ ? tokens.token_contents[start_].begin
257  : tokens.token_contents[pos_ - 1].end,
258  tokens.token_contents[start_].pos};
259  }
260 
261  // We exclude {prev_} and {child_} from equality and hash computations,
262  // because they are just globally unique data associated with an item.
263  bool operator==(const Item& other) const {
264  return rule_ == other.rule_ && mark_ == other.mark_ &&
265  start_ == other.start_ && pos_ == other.pos_;
266  }
267 
268  friend size_t hash_value(const Item& i) {
269  return base::hash_combine(i.rule_, i.mark_, i.start_, i.pos_);
270  }
271 
272  const Rule* rule() const { return rule_; }
273  Symbol* left() const { return rule_->left(); }
274  const std::vector<Symbol*>& right() const { return rule_->right(); }
275  size_t pos() const { return pos_; }
276  size_t start() const { return start_; }
277 
278  private:
279  const Rule* rule_;
280  size_t mark_;
281  size_t start_;
282  size_t pos_;
283 
284  const Item* prev_ = nullptr;
285  const Item* child_ = nullptr;
286 };
287 
288 inline base::Optional<ParseResult> Symbol::RunAction(
289  const Item* item, const LexerResult& tokens) {
290  DCHECK(item->IsComplete());
291  DCHECK_EQ(item->left(), this);
292  return item->rule()->RunAction(item, tokens);
293 }
294 
295 V8_EXPORT_PRIVATE const Item* RunEarleyAlgorithm(
296  Symbol* start, const LexerResult& tokens,
297  std::unordered_set<Item, base::hash<Item>>* processed);
298 
299 inline base::Optional<ParseResult> ParseTokens(Symbol* start,
300  const LexerResult& tokens) {
301  std::unordered_set<Item, base::hash<Item>> table;
302  const Item* final_item = RunEarleyAlgorithm(start, tokens, &table);
303  return start->RunAction(final_item, tokens);
304 }
305 
306 // The lexical syntax is dynamically defined while building the grammar by
307 // adding patterns and keywords to the Lexer.
308 // The term keyword here can stand for any fixed character sequence, including
309 // operators and parentheses.
310 // Each pattern or keyword automatically gets a terminal symbol associated with
311 // it. These symbols form the result of the lexing.
312 // Patterns and keywords are matched using the longest match principle. If the
313 // longest matching pattern coincides with a keyword, the keyword symbol is
314 // chosen instead of the pattern.
315 // In addition, there is a single whitespace pattern which is consumed but does
316 // not become part of the token list.
317 class Lexer {
318  public:
319  // Functions to define patterns. They try to match starting from {pos}. If
320  // successful, they return true and advance {pos}. Otherwise, {pos} stays
321  // unchanged.
322  using PatternFunction = bool (*)(InputPosition* pos);
323 
324  void SetWhitespace(PatternFunction whitespace) {
325  match_whitespace_ = whitespace;
326  }
327 
328  Symbol* Pattern(PatternFunction pattern) { return &patterns_[pattern]; }
329  Symbol* Token(const std::string& keyword) { return &keywords_[keyword]; }
330  V8_EXPORT_PRIVATE LexerResult RunLexer(const std::string& input);
331 
332  private:
333  PatternFunction match_whitespace_ = [](InputPosition*) { return false; };
334  std::map<PatternFunction, Symbol> patterns_;
335  std::map<std::string, Symbol> keywords_;
336  Symbol* MatchToken(InputPosition* pos, InputPosition end);
337 };
338 
339 // A grammar can have a result, which is the results of the start symbol.
340 // Grammar is intended to be subclassed, with Symbol members forming the
341 // mutually recursive rules of the grammar.
342 class Grammar {
343  public:
344  using PatternFunction = Lexer::PatternFunction;
345 
346  explicit Grammar(Symbol* start) : start_(start) {}
347 
348  base::Optional<ParseResult> Parse(const std::string& input) {
349  LexerResult tokens = lexer().RunLexer(input);
350  return ParseTokens(start_, tokens);
351  }
352 
353  protected:
354  Symbol* Token(const std::string& s) { return lexer_.Token(s); }
355  Symbol* Pattern(PatternFunction pattern) { return lexer_.Pattern(pattern); }
356  void SetWhitespace(PatternFunction ws) { lexer_.SetWhitespace(ws); }
357 
358  // NewSymbol() allocates a fresh symbol and stores it in the current grammar.
359  // This is necessary to define helpers that create new symbols.
360  Symbol* NewSymbol(std::initializer_list<Rule> rules = {}) {
361  Symbol* result = new Symbol(rules);
362  generated_symbols_.push_back(std::unique_ptr<Symbol>(result));
363  return result;
364  }
365 
366  // Helper functions to define lexer patterns. If they match, they return true
367  // and advance {pos}. Otherwise, {pos} is unchanged.
368  V8_EXPORT_PRIVATE static bool MatchChar(int (*char_class)(int),
369  InputPosition* pos);
370  V8_EXPORT_PRIVATE static bool MatchChar(bool (*char_class)(char),
371  InputPosition* pos);
372  V8_EXPORT_PRIVATE static bool MatchAnyChar(InputPosition* pos);
373  V8_EXPORT_PRIVATE static bool MatchString(const char* s, InputPosition* pos);
374 
375  // The action MatchInput() produces the input matched by the rule as
376  // result.
377  static base::Optional<ParseResult> YieldMatchedInput(
378  ParseResultIterator* child_results) {
379  return ParseResult{child_results->matched_input().ToString()};
380  }
381 
382  // Create a new symbol to parse the given sequence of symbols.
383  // At most one of the symbols can return a result.
384  Symbol* Sequence(std::vector<Symbol*> symbols) {
385  return NewSymbol({Rule(std::move(symbols))});
386  }
387 
388  template <class T, T value>
389  static base::Optional<ParseResult> YieldIntegralConstant(
390  ParseResultIterator* child_results) {
391  return ParseResult{value};
392  }
393 
394  template <class T>
395  static base::Optional<ParseResult> YieldDefaultValue(
396  ParseResultIterator* child_results) {
397  return ParseResult{T{}};
398  }
399 
400  template <class From, class To>
401  static base::Optional<ParseResult> CastParseResult(
402  ParseResultIterator* child_results) {
403  To result = std::move(child_results->NextAs<From>());
404  return ParseResult{std::move(result)};
405  }
406 
407  // Try to parse {s} and return the result of type {Result} casted to {T}.
408  // Otherwise, the result is a default-constructed {T}.
409  template <class T, class Result = T>
410  Symbol* TryOrDefault(Symbol* s) {
411  return NewSymbol({Rule({s}, CastParseResult<Result, T>),
412  Rule({}, YieldDefaultValue<T>)});
413  }
414 
415  template <class T>
416  static base::Optional<ParseResult> MakeSingletonVector(
417  ParseResultIterator* child_results) {
418  T x = child_results->NextAs<T>();
419  std::vector<T> result;
420  result.push_back(std::move(x));
421  return ParseResult{std::move(result)};
422  }
423 
424  template <class T>
425  static base::Optional<ParseResult> MakeExtendedVector(
426  ParseResultIterator* child_results) {
427  std::vector<T> l = child_results->NextAs<std::vector<T>>();
428  T x = child_results->NextAs<T>();
429  l.push_back(std::move(x));
430  return ParseResult{std::move(l)};
431  }
432 
433  // For example, NonemptyList(Token("A"), Token(",")) parses any of
434  // A or A,A or A,A,A and so on.
435  template <class T>
436  Symbol* NonemptyList(Symbol* element,
437  base::Optional<Symbol*> separator = {}) {
438  Symbol* list = NewSymbol();
439  *list = {Rule({element}, MakeSingletonVector<T>),
440  separator
441  ? Rule({list, *separator, element}, MakeExtendedVector<T>)
442  : Rule({list, element}, MakeExtendedVector<T>)};
443  return list;
444  }
445 
446  template <class T>
447  Symbol* List(Symbol* element, base::Optional<Symbol*> separator = {}) {
448  return TryOrDefault<std::vector<T>>(NonemptyList<T>(element, separator));
449  }
450 
451  template <class T>
452  Symbol* Optional(Symbol* x) {
453  return TryOrDefault<base::Optional<T>, T>(x);
454  }
455 
456  Symbol* CheckIf(Symbol* x) {
457  return NewSymbol({Rule({x}, YieldIntegralConstant<bool, true>),
458  Rule({}, YieldIntegralConstant<bool, false>)});
459  }
460 
461  Lexer& lexer() { return lexer_; }
462 
463  private:
464  Lexer lexer_;
465  std::vector<std::unique_ptr<Symbol>> generated_symbols_;
466  Symbol* start_;
467 };
468 
469 } // namespace torque
470 } // namespace internal
471 } // namespace v8
472 
473 #endif // V8_TORQUE_EARLEY_PARSER_H_
Definition: libplatform.h:13