V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
builtins-number-gen.cc
1 // Copyright 2017 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/builtins/builtins-math-gen.h"
6 #include "src/builtins/builtins-utils-gen.h"
7 #include "src/builtins/builtins.h"
8 #include "src/code-stub-assembler.h"
9 #include "src/ic/binary-op-assembler.h"
10 
11 namespace v8 {
12 namespace internal {
13 
14 // -----------------------------------------------------------------------------
15 // ES6 section 20.1 Number Objects
16 
18  public:
20  : CodeStubAssembler(state) {}
21 
22  protected:
23  template <typename Descriptor>
24  void EmitBitwiseOp(Operation op) {
25  Node* left = Parameter(Descriptor::kLeft);
26  Node* right = Parameter(Descriptor::kRight);
27  Node* context = Parameter(Descriptor::kContext);
28 
29  VARIABLE(var_left_word32, MachineRepresentation::kWord32);
30  VARIABLE(var_right_word32, MachineRepresentation::kWord32);
31  VARIABLE(var_left_bigint, MachineRepresentation::kTagged, left);
32  VARIABLE(var_right_bigint, MachineRepresentation::kTagged);
33  Label if_left_number(this), do_number_op(this);
34  Label if_left_bigint(this), do_bigint_op(this);
35 
36  TaggedToWord32OrBigInt(context, left, &if_left_number, &var_left_word32,
37  &if_left_bigint, &var_left_bigint);
38  BIND(&if_left_number);
39  TaggedToWord32OrBigInt(context, right, &do_number_op, &var_right_word32,
40  &do_bigint_op, &var_right_bigint);
41  BIND(&do_number_op);
42  Return(BitwiseOp(var_left_word32.value(), var_right_word32.value(), op));
43 
44  // BigInt cases.
45  BIND(&if_left_bigint);
46  TaggedToNumeric(context, right, &do_bigint_op, &var_right_bigint);
47 
48  BIND(&do_bigint_op);
49  Return(CallRuntime(Runtime::kBigIntBinaryOp, context,
50  var_left_bigint.value(), var_right_bigint.value(),
51  SmiConstant(op)));
52  }
53 
54  template <typename Descriptor>
55  void RelationalComparisonBuiltin(Operation op) {
56  Node* lhs = Parameter(Descriptor::kLeft);
57  Node* rhs = Parameter(Descriptor::kRight);
58  Node* context = Parameter(Descriptor::kContext);
59 
60  Return(RelationalComparison(op, lhs, rhs, context));
61  }
62 
63  template <typename Descriptor>
64  void UnaryOp(Variable* var_input, Label* do_smi, Label* do_double,
65  Variable* var_input_double, Label* do_bigint);
66 
67  template <typename Descriptor>
68  void BinaryOp(Label* smis, Variable* var_left, Variable* var_right,
69  Label* doubles, Variable* var_left_double,
70  Variable* var_right_double, Label* bigints);
71 };
72 
73 // ES6 #sec-number.isfinite
74 TF_BUILTIN(NumberIsFinite, CodeStubAssembler) {
75  Node* number = Parameter(Descriptor::kNumber);
76 
77  Label return_true(this), return_false(this);
78 
79  // Check if {number} is a Smi.
80  GotoIf(TaggedIsSmi(number), &return_true);
81 
82  // Check if {number} is a HeapNumber.
83  GotoIfNot(IsHeapNumber(number), &return_false);
84 
85  // Check if {number} contains a finite, non-NaN value.
86  Node* number_value = LoadHeapNumberValue(number);
87  BranchIfFloat64IsNaN(Float64Sub(number_value, number_value), &return_false,
88  &return_true);
89 
90  BIND(&return_true);
91  Return(TrueConstant());
92 
93  BIND(&return_false);
94  Return(FalseConstant());
95 }
96 
97 TF_BUILTIN(AllocateHeapNumber, CodeStubAssembler) {
98  Node* result = AllocateHeapNumber();
99  Return(result);
100 }
101 
102 // ES6 #sec-number.isinteger
103 TF_BUILTIN(NumberIsInteger, CodeStubAssembler) {
104  TNode<Object> number = CAST(Parameter(Descriptor::kNumber));
105  Return(SelectBooleanConstant(IsInteger(number)));
106 }
107 
108 // ES6 #sec-number.isnan
109 TF_BUILTIN(NumberIsNaN, CodeStubAssembler) {
110  Node* number = Parameter(Descriptor::kNumber);
111 
112  Label return_true(this), return_false(this);
113 
114  // Check if {number} is a Smi.
115  GotoIf(TaggedIsSmi(number), &return_false);
116 
117  // Check if {number} is a HeapNumber.
118  GotoIfNot(IsHeapNumber(number), &return_false);
119 
120  // Check if {number} contains a NaN value.
121  Node* number_value = LoadHeapNumberValue(number);
122  BranchIfFloat64IsNaN(number_value, &return_true, &return_false);
123 
124  BIND(&return_true);
125  Return(TrueConstant());
126 
127  BIND(&return_false);
128  Return(FalseConstant());
129 }
130 
131 // ES6 #sec-number.issafeinteger
132 TF_BUILTIN(NumberIsSafeInteger, CodeStubAssembler) {
133  TNode<Object> number = CAST(Parameter(Descriptor::kNumber));
134  Return(SelectBooleanConstant(IsSafeInteger(number)));
135 }
136 
137 // ES6 #sec-number.parsefloat
138 TF_BUILTIN(NumberParseFloat, CodeStubAssembler) {
139  Node* context = Parameter(Descriptor::kContext);
140 
141  // We might need to loop once for ToString conversion.
142  VARIABLE(var_input, MachineRepresentation::kTagged,
143  Parameter(Descriptor::kString));
144  Label loop(this, &var_input);
145  Goto(&loop);
146  BIND(&loop);
147  {
148  // Load the current {input} value.
149  Node* input = var_input.value();
150 
151  // Check if the {input} is a HeapObject or a Smi.
152  Label if_inputissmi(this), if_inputisnotsmi(this);
153  Branch(TaggedIsSmi(input), &if_inputissmi, &if_inputisnotsmi);
154 
155  BIND(&if_inputissmi);
156  {
157  // The {input} is already a Number, no need to do anything.
158  Return(input);
159  }
160 
161  BIND(&if_inputisnotsmi);
162  {
163  // The {input} is a HeapObject, check if it's already a String.
164  Label if_inputisstring(this), if_inputisnotstring(this);
165  Node* input_map = LoadMap(input);
166  Node* input_instance_type = LoadMapInstanceType(input_map);
167  Branch(IsStringInstanceType(input_instance_type), &if_inputisstring,
168  &if_inputisnotstring);
169 
170  BIND(&if_inputisstring);
171  {
172  // The {input} is already a String, check if {input} contains
173  // a cached array index.
174  Label if_inputcached(this), if_inputnotcached(this);
175  Node* input_hash = LoadNameHashField(input);
176  Branch(IsClearWord32(input_hash,
177  Name::kDoesNotContainCachedArrayIndexMask),
178  &if_inputcached, &if_inputnotcached);
179 
180  BIND(&if_inputcached);
181  {
182  // Just return the {input}s cached array index.
183  Node* input_array_index =
184  DecodeWordFromWord32<String::ArrayIndexValueBits>(input_hash);
185  Return(SmiTag(input_array_index));
186  }
187 
188  BIND(&if_inputnotcached);
189  {
190  // Need to fall back to the runtime to convert {input} to double.
191  Return(CallRuntime(Runtime::kStringParseFloat, context, input));
192  }
193  }
194 
195  BIND(&if_inputisnotstring);
196  {
197  // The {input} is neither a String nor a Smi, check for HeapNumber.
198  Label if_inputisnumber(this),
199  if_inputisnotnumber(this, Label::kDeferred);
200  Branch(IsHeapNumberMap(input_map), &if_inputisnumber,
201  &if_inputisnotnumber);
202 
203  BIND(&if_inputisnumber);
204  {
205  // The {input} is already a Number, take care of -0.
206  Label if_inputiszero(this), if_inputisnotzero(this);
207  Node* input_value = LoadHeapNumberValue(input);
208  Branch(Float64Equal(input_value, Float64Constant(0.0)),
209  &if_inputiszero, &if_inputisnotzero);
210 
211  BIND(&if_inputiszero);
212  Return(SmiConstant(0));
213 
214  BIND(&if_inputisnotzero);
215  Return(input);
216  }
217 
218  BIND(&if_inputisnotnumber);
219  {
220  // Need to convert the {input} to String first.
221  // TODO(bmeurer): This could be more efficient if necessary.
222  var_input.Bind(CallBuiltin(Builtins::kToString, context, input));
223  Goto(&loop);
224  }
225  }
226  }
227  }
228 }
229 
230 // ES6 #sec-number.parseint
231 TF_BUILTIN(ParseInt, CodeStubAssembler) {
232  Node* context = Parameter(Descriptor::kContext);
233  Node* input = Parameter(Descriptor::kString);
234  Node* radix = Parameter(Descriptor::kRadix);
235 
236  // Check if {radix} is treated as 10 (i.e. undefined, 0 or 10).
237  Label if_radix10(this), if_generic(this, Label::kDeferred);
238  GotoIf(IsUndefined(radix), &if_radix10);
239  GotoIf(WordEqual(radix, SmiConstant(10)), &if_radix10);
240  GotoIf(WordEqual(radix, SmiConstant(0)), &if_radix10);
241  Goto(&if_generic);
242 
243  BIND(&if_radix10);
244  {
245  // Check if we can avoid the ToString conversion on {input}.
246  Label if_inputissmi(this), if_inputisheapnumber(this),
247  if_inputisstring(this);
248  GotoIf(TaggedIsSmi(input), &if_inputissmi);
249  Node* input_map = LoadMap(input);
250  GotoIf(IsHeapNumberMap(input_map), &if_inputisheapnumber);
251  Node* input_instance_type = LoadMapInstanceType(input_map);
252  Branch(IsStringInstanceType(input_instance_type), &if_inputisstring,
253  &if_generic);
254 
255  BIND(&if_inputissmi);
256  {
257  // Just return the {input}.
258  Return(input);
259  }
260 
261  BIND(&if_inputisheapnumber);
262  {
263  // Check if the {input} value is in Signed32 range.
264  Label if_inputissigned32(this);
265  Node* input_value = LoadHeapNumberValue(input);
266  Node* input_value32 = TruncateFloat64ToWord32(input_value);
267  GotoIf(Float64Equal(input_value, ChangeInt32ToFloat64(input_value32)),
268  &if_inputissigned32);
269 
270  // Check if the absolute {input} value is in the [1,1<<31[ range.
271  // Take the generic path for the range [0,1[ because the result
272  // could be -0.
273  Node* input_value_abs = Float64Abs(input_value);
274 
275  GotoIfNot(Float64LessThan(input_value_abs, Float64Constant(1u << 31)),
276  &if_generic);
277  Branch(Float64LessThanOrEqual(Float64Constant(1), input_value_abs),
278  &if_inputissigned32, &if_generic);
279 
280  // Return the truncated int32 value, and return the tagged result.
281  BIND(&if_inputissigned32);
282  Node* result = ChangeInt32ToTagged(input_value32);
283  Return(result);
284  }
285 
286  BIND(&if_inputisstring);
287  {
288  // Check if the String {input} has a cached array index.
289  Node* input_hash = LoadNameHashField(input);
290  GotoIf(IsSetWord32(input_hash, Name::kDoesNotContainCachedArrayIndexMask),
291  &if_generic);
292 
293  // Return the cached array index as result.
294  Node* input_index =
295  DecodeWordFromWord32<String::ArrayIndexValueBits>(input_hash);
296  Node* result = SmiTag(input_index);
297  Return(result);
298  }
299  }
300 
301  BIND(&if_generic);
302  {
303  Node* result = CallRuntime(Runtime::kStringParseInt, context, input, radix);
304  Return(result);
305  }
306 }
307 
308 // ES6 #sec-number.parseint
309 TF_BUILTIN(NumberParseInt, CodeStubAssembler) {
310  Node* context = Parameter(Descriptor::kContext);
311  Node* input = Parameter(Descriptor::kString);
312  Node* radix = Parameter(Descriptor::kRadix);
313  Return(CallBuiltin(Builtins::kParseInt, context, input, radix));
314 }
315 
316 // ES6 #sec-number.prototype.valueof
317 TF_BUILTIN(NumberPrototypeValueOf, CodeStubAssembler) {
318  Node* context = Parameter(Descriptor::kContext);
319  Node* receiver = Parameter(Descriptor::kReceiver);
320 
321  Node* result = ToThisValue(context, receiver, PrimitiveType::kNumber,
322  "Number.prototype.valueOf");
323  Return(result);
324 }
325 
327  public:
329  : CodeStubAssembler(state) {}
330 
331  protected:
332  void ConvertReceiverAndLoop(Variable* var_value, Label* loop, Node* context) {
333  // Call ToPrimitive explicitly without hint (whereas ToNumber
334  // would pass a "number" hint).
335  Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate());
336  var_value->Bind(CallStub(callable, context, var_value->value()));
337  Goto(loop);
338  }
339 
340  void ConvertNonReceiverAndLoop(Variable* var_value, Label* loop,
341  Node* context) {
342  var_value->Bind(CallBuiltin(Builtins::kNonNumberToNumeric, context,
343  var_value->value()));
344  Goto(loop);
345  }
346 
347  void ConvertAndLoop(Variable* var_value, Node* instance_type, Label* loop,
348  Node* context) {
349  Label is_not_receiver(this, Label::kDeferred);
350  GotoIfNot(IsJSReceiverInstanceType(instance_type), &is_not_receiver);
351 
352  ConvertReceiverAndLoop(var_value, loop, context);
353 
354  BIND(&is_not_receiver);
355  ConvertNonReceiverAndLoop(var_value, loop, context);
356  }
357 };
358 
359 TF_BUILTIN(Add, AddStubAssembler) {
360  Node* context = Parameter(Descriptor::kContext);
361  VARIABLE(var_left, MachineRepresentation::kTagged,
362  Parameter(Descriptor::kLeft));
363  VARIABLE(var_right, MachineRepresentation::kTagged,
364  Parameter(Descriptor::kRight));
365 
366  // Shared entry for floating point addition.
367  Label do_double_add(this);
368  VARIABLE(var_left_double, MachineRepresentation::kFloat64);
369  VARIABLE(var_right_double, MachineRepresentation::kFloat64);
370 
371  // We might need to loop several times due to ToPrimitive, ToString and/or
372  // ToNumeric conversions.
373  VARIABLE(var_result, MachineRepresentation::kTagged);
374  Variable* loop_vars[2] = {&var_left, &var_right};
375  Label loop(this, 2, loop_vars),
376  string_add_convert_left(this, Label::kDeferred),
377  string_add_convert_right(this, Label::kDeferred),
378  do_bigint_add(this, Label::kDeferred);
379  Goto(&loop);
380  BIND(&loop);
381  {
382  Node* left = var_left.value();
383  Node* right = var_right.value();
384 
385  Label if_left_smi(this), if_left_heapobject(this);
386  Branch(TaggedIsSmi(left), &if_left_smi, &if_left_heapobject);
387 
388  BIND(&if_left_smi);
389  {
390  Label if_right_smi(this), if_right_heapobject(this);
391  Branch(TaggedIsSmi(right), &if_right_smi, &if_right_heapobject);
392 
393  BIND(&if_right_smi);
394  {
395  Label if_overflow(this);
396  TNode<Smi> result = TrySmiAdd(CAST(left), CAST(right), &if_overflow);
397  Return(result);
398 
399  BIND(&if_overflow);
400  {
401  var_left_double.Bind(SmiToFloat64(left));
402  var_right_double.Bind(SmiToFloat64(right));
403  Goto(&do_double_add);
404  }
405  } // if_right_smi
406 
407  BIND(&if_right_heapobject);
408  {
409  Node* right_map = LoadMap(right);
410 
411  Label if_right_not_number(this, Label::kDeferred);
412  GotoIfNot(IsHeapNumberMap(right_map), &if_right_not_number);
413 
414  // {right} is a HeapNumber.
415  var_left_double.Bind(SmiToFloat64(left));
416  var_right_double.Bind(LoadHeapNumberValue(right));
417  Goto(&do_double_add);
418 
419  BIND(&if_right_not_number);
420  {
421  Node* right_instance_type = LoadMapInstanceType(right_map);
422  GotoIf(IsStringInstanceType(right_instance_type),
423  &string_add_convert_left);
424  GotoIf(IsBigIntInstanceType(right_instance_type), &do_bigint_add);
425  ConvertAndLoop(&var_right, right_instance_type, &loop, context);
426  }
427  } // if_right_heapobject
428  } // if_left_smi
429 
430  BIND(&if_left_heapobject);
431  {
432  Node* left_map = LoadMap(left);
433  Label if_right_smi(this), if_right_heapobject(this);
434  Branch(TaggedIsSmi(right), &if_right_smi, &if_right_heapobject);
435 
436  BIND(&if_right_smi);
437  {
438  Label if_left_not_number(this, Label::kDeferred);
439  GotoIfNot(IsHeapNumberMap(left_map), &if_left_not_number);
440 
441  // {left} is a HeapNumber, {right} is a Smi.
442  var_left_double.Bind(LoadHeapNumberValue(left));
443  var_right_double.Bind(SmiToFloat64(right));
444  Goto(&do_double_add);
445 
446  BIND(&if_left_not_number);
447  {
448  Node* left_instance_type = LoadMapInstanceType(left_map);
449  GotoIf(IsStringInstanceType(left_instance_type),
450  &string_add_convert_right);
451  GotoIf(IsBigIntInstanceType(left_instance_type), &do_bigint_add);
452  // {left} is neither a Numeric nor a String, and {right} is a Smi.
453  ConvertAndLoop(&var_left, left_instance_type, &loop, context);
454  }
455  } // if_right_smi
456 
457  BIND(&if_right_heapobject);
458  {
459  Node* right_map = LoadMap(right);
460 
461  Label if_left_number(this), if_left_not_number(this, Label::kDeferred);
462  Branch(IsHeapNumberMap(left_map), &if_left_number, &if_left_not_number);
463 
464  BIND(&if_left_number);
465  {
466  Label if_right_not_number(this, Label::kDeferred);
467  GotoIfNot(IsHeapNumberMap(right_map), &if_right_not_number);
468 
469  // Both {left} and {right} are HeapNumbers.
470  var_left_double.Bind(LoadHeapNumberValue(left));
471  var_right_double.Bind(LoadHeapNumberValue(right));
472  Goto(&do_double_add);
473 
474  BIND(&if_right_not_number);
475  {
476  Node* right_instance_type = LoadMapInstanceType(right_map);
477  GotoIf(IsStringInstanceType(right_instance_type),
478  &string_add_convert_left);
479  GotoIf(IsBigIntInstanceType(right_instance_type), &do_bigint_add);
480  // {left} is a HeapNumber, {right} is neither Number nor String.
481  ConvertAndLoop(&var_right, right_instance_type, &loop, context);
482  }
483  } // if_left_number
484 
485  BIND(&if_left_not_number);
486  {
487  Label if_left_bigint(this);
488  Node* left_instance_type = LoadMapInstanceType(left_map);
489  GotoIf(IsStringInstanceType(left_instance_type),
490  &string_add_convert_right);
491  Node* right_instance_type = LoadMapInstanceType(right_map);
492  GotoIf(IsStringInstanceType(right_instance_type),
493  &string_add_convert_left);
494  GotoIf(IsBigIntInstanceType(left_instance_type), &if_left_bigint);
495  Label if_left_not_receiver(this, Label::kDeferred);
496  Label if_right_not_receiver(this, Label::kDeferred);
497  GotoIfNot(IsJSReceiverInstanceType(left_instance_type),
498  &if_left_not_receiver);
499  // {left} is a JSReceiver, convert it first.
500  ConvertReceiverAndLoop(&var_left, &loop, context);
501 
502  BIND(&if_left_bigint);
503  {
504  // {right} is a HeapObject, but not a String. Jump to
505  // {do_bigint_add} if {right} is already a Numeric.
506  GotoIf(IsBigIntInstanceType(right_instance_type), &do_bigint_add);
507  GotoIf(IsHeapNumberMap(right_map), &do_bigint_add);
508  ConvertAndLoop(&var_right, right_instance_type, &loop, context);
509  }
510 
511  BIND(&if_left_not_receiver);
512  GotoIfNot(IsJSReceiverInstanceType(right_instance_type),
513  &if_right_not_receiver);
514  // {left} is a Primitive, but {right} is a JSReceiver, so convert
515  // {right} with priority.
516  ConvertReceiverAndLoop(&var_right, &loop, context);
517 
518  BIND(&if_right_not_receiver);
519  // Neither {left} nor {right} are JSReceivers.
520  ConvertNonReceiverAndLoop(&var_left, &loop, context);
521  }
522  } // if_right_heapobject
523  } // if_left_heapobject
524  }
525  BIND(&string_add_convert_left);
526  {
527  // Convert {left} to a String and concatenate it with the String {right}.
528  TailCallBuiltin(Builtins::kStringAdd_ConvertLeft, context, var_left.value(),
529  var_right.value());
530  }
531 
532  BIND(&string_add_convert_right);
533  {
534  // Convert {right} to a String and concatenate it with the String {left}.
535  TailCallBuiltin(Builtins::kStringAdd_ConvertRight, context,
536  var_left.value(), var_right.value());
537  }
538 
539  BIND(&do_bigint_add);
540  {
541  Return(CallRuntime(Runtime::kBigIntBinaryOp, context, var_left.value(),
542  var_right.value(), SmiConstant(Operation::kAdd)));
543  }
544 
545  BIND(&do_double_add);
546  {
547  Node* value = Float64Add(var_left_double.value(), var_right_double.value());
548  Return(AllocateHeapNumberWithValue(value));
549  }
550 }
551 
552 template <typename Descriptor>
553 void NumberBuiltinsAssembler::UnaryOp(Variable* var_input, Label* do_smi,
554  Label* do_double,
555  Variable* var_input_double,
556  Label* do_bigint) {
557  DCHECK_EQ(var_input->rep(), MachineRepresentation::kTagged);
558  DCHECK_IMPLIES(var_input_double != nullptr,
559  var_input_double->rep() == MachineRepresentation::kFloat64);
560 
561  Node* context = Parameter(Descriptor::kContext);
562  var_input->Bind(Parameter(Descriptor::kValue));
563 
564  // We might need to loop for ToNumeric conversion.
565  Label loop(this, {var_input});
566  Goto(&loop);
567  BIND(&loop);
568  Node* input = var_input->value();
569 
570  Label not_number(this);
571  GotoIf(TaggedIsSmi(input), do_smi);
572  GotoIfNot(IsHeapNumber(input), &not_number);
573  if (var_input_double != nullptr) {
574  var_input_double->Bind(LoadHeapNumberValue(input));
575  }
576  Goto(do_double);
577 
578  BIND(&not_number);
579  GotoIf(IsBigInt(input), do_bigint);
580  var_input->Bind(CallBuiltin(Builtins::kNonNumberToNumeric, context, input));
581  Goto(&loop);
582 }
583 
584 template <typename Descriptor>
585 void NumberBuiltinsAssembler::BinaryOp(Label* smis, Variable* var_left,
586  Variable* var_right, Label* doubles,
587  Variable* var_left_double,
588  Variable* var_right_double,
589  Label* bigints) {
590  DCHECK_EQ(var_left->rep(), MachineRepresentation::kTagged);
591  DCHECK_EQ(var_right->rep(), MachineRepresentation::kTagged);
592  DCHECK_IMPLIES(var_left_double != nullptr,
593  var_left_double->rep() == MachineRepresentation::kFloat64);
594  DCHECK_IMPLIES(var_right_double != nullptr,
595  var_right_double->rep() == MachineRepresentation::kFloat64);
596  DCHECK_EQ(var_left_double == nullptr, var_right_double == nullptr);
597 
598  Node* context = Parameter(Descriptor::kContext);
599  var_left->Bind(Parameter(Descriptor::kLeft));
600  var_right->Bind(Parameter(Descriptor::kRight));
601 
602  // We might need to loop for ToNumeric conversions.
603  Label loop(this, {var_left, var_right});
604  Goto(&loop);
605  BIND(&loop);
606 
607  Label left_not_smi(this), right_not_smi(this);
608  Label left_not_number(this), right_not_number(this);
609  GotoIfNot(TaggedIsSmi(var_left->value()), &left_not_smi);
610  GotoIf(TaggedIsSmi(var_right->value()), smis);
611 
612  // At this point, var_left is a Smi but var_right is not.
613  GotoIfNot(IsHeapNumber(var_right->value()), &right_not_number);
614  if (var_left_double != nullptr) {
615  var_left_double->Bind(SmiToFloat64(var_left->value()));
616  var_right_double->Bind(LoadHeapNumberValue(var_right->value()));
617  }
618  Goto(doubles);
619 
620  BIND(&left_not_smi);
621  {
622  GotoIfNot(IsHeapNumber(var_left->value()), &left_not_number);
623  GotoIfNot(TaggedIsSmi(var_right->value()), &right_not_smi);
624 
625  // At this point, var_left is a HeapNumber and var_right is a Smi.
626  if (var_left_double != nullptr) {
627  var_left_double->Bind(LoadHeapNumberValue(var_left->value()));
628  var_right_double->Bind(SmiToFloat64(var_right->value()));
629  }
630  Goto(doubles);
631  }
632 
633  BIND(&right_not_smi);
634  {
635  GotoIfNot(IsHeapNumber(var_right->value()), &right_not_number);
636  if (var_left_double != nullptr) {
637  var_left_double->Bind(LoadHeapNumberValue(var_left->value()));
638  var_right_double->Bind(LoadHeapNumberValue(var_right->value()));
639  }
640  Goto(doubles);
641  }
642 
643  BIND(&left_not_number);
644  {
645  Label left_bigint(this);
646  GotoIf(IsBigInt(var_left->value()), &left_bigint);
647  var_left->Bind(
648  CallBuiltin(Builtins::kNonNumberToNumeric, context, var_left->value()));
649  Goto(&loop);
650 
651  BIND(&left_bigint);
652  {
653  // Jump to {bigints} if {var_right} is already a Numeric.
654  GotoIf(TaggedIsSmi(var_right->value()), bigints);
655  GotoIf(IsBigInt(var_right->value()), bigints);
656  GotoIf(IsHeapNumber(var_right->value()), bigints);
657  var_right->Bind(CallBuiltin(Builtins::kNonNumberToNumeric, context,
658  var_right->value()));
659  Goto(&loop);
660  }
661  }
662 
663  BIND(&right_not_number);
664  {
665  GotoIf(IsBigInt(var_right->value()), bigints);
666  var_right->Bind(CallBuiltin(Builtins::kNonNumberToNumeric, context,
667  var_right->value()));
668  Goto(&loop);
669  }
670 }
671 
672 TF_BUILTIN(Subtract, NumberBuiltinsAssembler) {
673  VARIABLE(var_left, MachineRepresentation::kTagged);
674  VARIABLE(var_right, MachineRepresentation::kTagged);
675  VARIABLE(var_left_double, MachineRepresentation::kFloat64);
676  VARIABLE(var_right_double, MachineRepresentation::kFloat64);
677  Label do_smi_sub(this), do_double_sub(this), do_bigint_sub(this);
678 
679  BinaryOp<Descriptor>(&do_smi_sub, &var_left, &var_right, &do_double_sub,
680  &var_left_double, &var_right_double, &do_bigint_sub);
681 
682  BIND(&do_smi_sub);
683  {
684  Label if_overflow(this);
685  TNode<Smi> result = TrySmiSub(CAST(var_left.value()),
686  CAST(var_right.value()), &if_overflow);
687  Return(result);
688 
689  BIND(&if_overflow);
690  {
691  var_left_double.Bind(SmiToFloat64(var_left.value()));
692  var_right_double.Bind(SmiToFloat64(var_right.value()));
693  Goto(&do_double_sub);
694  }
695  }
696 
697  BIND(&do_double_sub);
698  {
699  Node* value = Float64Sub(var_left_double.value(), var_right_double.value());
700  Return(AllocateHeapNumberWithValue(value));
701  }
702 
703  BIND(&do_bigint_sub);
704  {
705  Node* context = Parameter(Descriptor::kContext);
706  Return(CallRuntime(Runtime::kBigIntBinaryOp, context, var_left.value(),
707  var_right.value(), SmiConstant(Operation::kSubtract)));
708  }
709 }
710 
711 TF_BUILTIN(BitwiseNot, NumberBuiltinsAssembler) {
712  Node* context = Parameter(Descriptor::kContext);
713  VARIABLE(var_input, MachineRepresentation::kTagged);
714  Label do_number(this), do_bigint(this);
715 
716  UnaryOp<Descriptor>(&var_input, &do_number, &do_number, nullptr, &do_bigint);
717 
718  BIND(&do_number);
719  {
720  TailCallBuiltin(Builtins::kBitwiseXor, context, var_input.value(),
721  SmiConstant(-1));
722  }
723 
724  BIND(&do_bigint);
725  {
726  Return(CallRuntime(Runtime::kBigIntUnaryOp, context, var_input.value(),
727  SmiConstant(Operation::kBitwiseNot)));
728  }
729 }
730 
731 TF_BUILTIN(Decrement, NumberBuiltinsAssembler) {
732  Node* context = Parameter(Descriptor::kContext);
733  VARIABLE(var_input, MachineRepresentation::kTagged);
734  Label do_number(this), do_bigint(this);
735 
736  UnaryOp<Descriptor>(&var_input, &do_number, &do_number, nullptr, &do_bigint);
737 
738  BIND(&do_number);
739  {
740  TailCallBuiltin(Builtins::kSubtract, context, var_input.value(),
741  SmiConstant(1));
742  }
743 
744  BIND(&do_bigint);
745  {
746  Return(CallRuntime(Runtime::kBigIntUnaryOp, context, var_input.value(),
747  SmiConstant(Operation::kDecrement)));
748  }
749 }
750 
751 TF_BUILTIN(Increment, NumberBuiltinsAssembler) {
752  Node* context = Parameter(Descriptor::kContext);
753  VARIABLE(var_input, MachineRepresentation::kTagged);
754  Label do_number(this), do_bigint(this);
755 
756  UnaryOp<Descriptor>(&var_input, &do_number, &do_number, nullptr, &do_bigint);
757 
758  BIND(&do_number);
759  {
760  TailCallBuiltin(Builtins::kAdd, context, var_input.value(), SmiConstant(1));
761  }
762 
763  BIND(&do_bigint);
764  {
765  Return(CallRuntime(Runtime::kBigIntUnaryOp, context, var_input.value(),
766  SmiConstant(Operation::kIncrement)));
767  }
768 }
769 
770 TF_BUILTIN(Negate, NumberBuiltinsAssembler) {
771  VARIABLE(var_input, MachineRepresentation::kTagged);
772  VARIABLE(var_input_double, MachineRepresentation::kFloat64);
773  Label do_smi(this), do_double(this), do_bigint(this);
774 
775  UnaryOp<Descriptor>(&var_input, &do_smi, &do_double, &var_input_double,
776  &do_bigint);
777 
778  BIND(&do_smi);
779  { Return(SmiMul(CAST(var_input.value()), SmiConstant(-1))); }
780 
781  BIND(&do_double);
782  {
783  Node* value = Float64Mul(var_input_double.value(), Float64Constant(-1));
784  Return(AllocateHeapNumberWithValue(value));
785  }
786 
787  BIND(&do_bigint);
788  {
789  Node* context = Parameter(Descriptor::kContext);
790  Return(CallRuntime(Runtime::kBigIntUnaryOp, context, var_input.value(),
791  SmiConstant(Operation::kNegate)));
792  }
793 }
794 
795 TF_BUILTIN(Multiply, NumberBuiltinsAssembler) {
796  VARIABLE(var_left, MachineRepresentation::kTagged);
797  VARIABLE(var_right, MachineRepresentation::kTagged);
798  VARIABLE(var_left_double, MachineRepresentation::kFloat64);
799  VARIABLE(var_right_double, MachineRepresentation::kFloat64);
800  Label do_smi_mul(this), do_double_mul(this), do_bigint_mul(this);
801 
802  BinaryOp<Descriptor>(&do_smi_mul, &var_left, &var_right, &do_double_mul,
803  &var_left_double, &var_right_double, &do_bigint_mul);
804 
805  BIND(&do_smi_mul);
806  // The result is not necessarily a smi, in case of overflow.
807  Return(SmiMul(CAST(var_left.value()), CAST(var_right.value())));
808 
809  BIND(&do_double_mul);
810  Node* value = Float64Mul(var_left_double.value(), var_right_double.value());
811  Return(AllocateHeapNumberWithValue(value));
812 
813  BIND(&do_bigint_mul);
814  {
815  Node* context = Parameter(Descriptor::kContext);
816  Return(CallRuntime(Runtime::kBigIntBinaryOp, context, var_left.value(),
817  var_right.value(), SmiConstant(Operation::kMultiply)));
818  }
819 }
820 
821 TF_BUILTIN(Divide, NumberBuiltinsAssembler) {
822  VARIABLE(var_left, MachineRepresentation::kTagged);
823  VARIABLE(var_right, MachineRepresentation::kTagged);
824  VARIABLE(var_left_double, MachineRepresentation::kFloat64);
825  VARIABLE(var_right_double, MachineRepresentation::kFloat64);
826  Label do_smi_div(this), do_double_div(this), do_bigint_div(this);
827 
828  BinaryOp<Descriptor>(&do_smi_div, &var_left, &var_right, &do_double_div,
829  &var_left_double, &var_right_double, &do_bigint_div);
830 
831  BIND(&do_smi_div);
832  {
833  // TODO(jkummerow): Consider just always doing a double division.
834  Label bailout(this);
835  TNode<Smi> dividend = CAST(var_left.value());
836  TNode<Smi> divisor = CAST(var_right.value());
837 
838  // Do floating point division if {divisor} is zero.
839  GotoIf(SmiEqual(divisor, SmiConstant(0)), &bailout);
840 
841  // Do floating point division if {dividend} is zero and {divisor} is
842  // negative.
843  Label dividend_is_zero(this), dividend_is_not_zero(this);
844  Branch(SmiEqual(dividend, SmiConstant(0)), &dividend_is_zero,
845  &dividend_is_not_zero);
846 
847  BIND(&dividend_is_zero);
848  {
849  GotoIf(SmiLessThan(divisor, SmiConstant(0)), &bailout);
850  Goto(&dividend_is_not_zero);
851  }
852  BIND(&dividend_is_not_zero);
853 
854  Node* untagged_divisor = SmiToInt32(divisor);
855  Node* untagged_dividend = SmiToInt32(dividend);
856 
857  // Do floating point division if {dividend} is kMinInt (or kMinInt - 1
858  // if the Smi size is 31) and {divisor} is -1.
859  Label divisor_is_minus_one(this), divisor_is_not_minus_one(this);
860  Branch(Word32Equal(untagged_divisor, Int32Constant(-1)),
861  &divisor_is_minus_one, &divisor_is_not_minus_one);
862 
863  BIND(&divisor_is_minus_one);
864  {
865  GotoIf(Word32Equal(
866  untagged_dividend,
867  Int32Constant(kSmiValueSize == 32 ? kMinInt : (kMinInt >> 1))),
868  &bailout);
869  Goto(&divisor_is_not_minus_one);
870  }
871  BIND(&divisor_is_not_minus_one);
872 
873  // TODO(epertoso): consider adding a machine instruction that returns
874  // both the result and the remainder.
875  Node* untagged_result = Int32Div(untagged_dividend, untagged_divisor);
876  Node* truncated = Int32Mul(untagged_result, untagged_divisor);
877  // Do floating point division if the remainder is not 0.
878  GotoIf(Word32NotEqual(untagged_dividend, truncated), &bailout);
879  Return(SmiFromInt32(untagged_result));
880 
881  // Bailout: convert {dividend} and {divisor} to double and do double
882  // division.
883  BIND(&bailout);
884  {
885  var_left_double.Bind(SmiToFloat64(dividend));
886  var_right_double.Bind(SmiToFloat64(divisor));
887  Goto(&do_double_div);
888  }
889  }
890 
891  BIND(&do_double_div);
892  {
893  Node* value = Float64Div(var_left_double.value(), var_right_double.value());
894  Return(AllocateHeapNumberWithValue(value));
895  }
896 
897  BIND(&do_bigint_div);
898  {
899  Node* context = Parameter(Descriptor::kContext);
900  Return(CallRuntime(Runtime::kBigIntBinaryOp, context, var_left.value(),
901  var_right.value(), SmiConstant(Operation::kDivide)));
902  }
903 }
904 
905 TF_BUILTIN(Modulus, NumberBuiltinsAssembler) {
906  VARIABLE(var_left, MachineRepresentation::kTagged);
907  VARIABLE(var_right, MachineRepresentation::kTagged);
908  VARIABLE(var_left_double, MachineRepresentation::kFloat64);
909  VARIABLE(var_right_double, MachineRepresentation::kFloat64);
910  Label do_smi_mod(this), do_double_mod(this), do_bigint_mod(this);
911 
912  BinaryOp<Descriptor>(&do_smi_mod, &var_left, &var_right, &do_double_mod,
913  &var_left_double, &var_right_double, &do_bigint_mod);
914 
915  BIND(&do_smi_mod);
916  Return(SmiMod(CAST(var_left.value()), CAST(var_right.value())));
917 
918  BIND(&do_double_mod);
919  Node* value = Float64Mod(var_left_double.value(), var_right_double.value());
920  Return(AllocateHeapNumberWithValue(value));
921 
922  BIND(&do_bigint_mod);
923  {
924  Node* context = Parameter(Descriptor::kContext);
925  Return(CallRuntime(Runtime::kBigIntBinaryOp, context, var_left.value(),
926  var_right.value(), SmiConstant(Operation::kModulus)));
927  }
928 }
929 
930 TF_BUILTIN(Exponentiate, NumberBuiltinsAssembler) {
931  VARIABLE(var_left, MachineRepresentation::kTagged);
932  VARIABLE(var_right, MachineRepresentation::kTagged);
933  Label do_number_exp(this), do_bigint_exp(this);
934  Node* context = Parameter(Descriptor::kContext);
935 
936  BinaryOp<Descriptor>(&do_number_exp, &var_left, &var_right, &do_number_exp,
937  nullptr, nullptr, &do_bigint_exp);
938 
939  BIND(&do_number_exp);
940  {
941  MathBuiltinsAssembler math_asm(state());
942  Return(math_asm.MathPow(context, var_left.value(), var_right.value()));
943  }
944 
945  BIND(&do_bigint_exp);
946  Return(CallRuntime(Runtime::kBigIntBinaryOp, context, var_left.value(),
947  var_right.value(), SmiConstant(Operation::kExponentiate)));
948 }
949 
950 TF_BUILTIN(ShiftLeft, NumberBuiltinsAssembler) {
951  EmitBitwiseOp<Descriptor>(Operation::kShiftLeft);
952 }
953 
954 TF_BUILTIN(ShiftRight, NumberBuiltinsAssembler) {
955  EmitBitwiseOp<Descriptor>(Operation::kShiftRight);
956 }
957 
958 TF_BUILTIN(ShiftRightLogical, NumberBuiltinsAssembler) {
959  EmitBitwiseOp<Descriptor>(Operation::kShiftRightLogical);
960 }
961 
962 TF_BUILTIN(BitwiseAnd, NumberBuiltinsAssembler) {
963  EmitBitwiseOp<Descriptor>(Operation::kBitwiseAnd);
964 }
965 
966 TF_BUILTIN(BitwiseOr, NumberBuiltinsAssembler) {
967  EmitBitwiseOp<Descriptor>(Operation::kBitwiseOr);
968 }
969 
970 TF_BUILTIN(BitwiseXor, NumberBuiltinsAssembler) {
971  EmitBitwiseOp<Descriptor>(Operation::kBitwiseXor);
972 }
973 
974 TF_BUILTIN(LessThan, NumberBuiltinsAssembler) {
975  RelationalComparisonBuiltin<Descriptor>(Operation::kLessThan);
976 }
977 
978 TF_BUILTIN(LessThanOrEqual, NumberBuiltinsAssembler) {
979  RelationalComparisonBuiltin<Descriptor>(Operation::kLessThanOrEqual);
980 }
981 
982 TF_BUILTIN(GreaterThan, NumberBuiltinsAssembler) {
983  RelationalComparisonBuiltin<Descriptor>(Operation::kGreaterThan);
984 }
985 
986 TF_BUILTIN(GreaterThanOrEqual, NumberBuiltinsAssembler) {
987  RelationalComparisonBuiltin<Descriptor>(Operation::kGreaterThanOrEqual);
988 }
989 
990 TF_BUILTIN(Equal, CodeStubAssembler) {
991  Node* lhs = Parameter(Descriptor::kLeft);
992  Node* rhs = Parameter(Descriptor::kRight);
993  Node* context = Parameter(Descriptor::kContext);
994 
995  Return(Equal(lhs, rhs, context));
996 }
997 
998 TF_BUILTIN(StrictEqual, CodeStubAssembler) {
999  Node* lhs = Parameter(Descriptor::kLeft);
1000  Node* rhs = Parameter(Descriptor::kRight);
1001 
1002  Return(StrictEqual(lhs, rhs));
1003 }
1004 
1005 } // namespace internal
1006 } // namespace v8
Definition: libplatform.h:13