V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
simulator-arm.h
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Declares a Simulator for ARM instructions if we are not generating a native
6 // ARM binary. This Simulator allows us to run and debug ARM code generation on
7 // regular desktop machines.
8 // V8 calls into generated code by using the GeneratedCode class,
9 // which will start execution in the Simulator or forwards to the real entry
10 // on a ARM HW platform.
11 
12 #ifndef V8_ARM_SIMULATOR_ARM_H_
13 #define V8_ARM_SIMULATOR_ARM_H_
14 
15 #include "src/allocation.h"
16 #include "src/base/lazy-instance.h"
17 #include "src/base/platform/mutex.h"
18 #include "src/boxed-float.h"
19 
20 #if defined(USE_SIMULATOR)
21 // Running with a simulator.
22 
23 #include "src/arm/constants-arm.h"
24 #include "src/assembler.h"
25 #include "src/base/hashmap.h"
26 #include "src/simulator-base.h"
27 
28 namespace v8 {
29 namespace internal {
30 
31 class CachePage {
32  public:
33  static const int LINE_VALID = 0;
34  static const int LINE_INVALID = 1;
35 
36  static const int kPageShift = 12;
37  static const int kPageSize = 1 << kPageShift;
38  static const int kPageMask = kPageSize - 1;
39  static const int kLineShift = 2; // The cache line is only 4 bytes right now.
40  static const int kLineLength = 1 << kLineShift;
41  static const int kLineMask = kLineLength - 1;
42 
43  CachePage() {
44  memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
45  }
46 
47  char* ValidityByte(int offset) {
48  return &validity_map_[offset >> kLineShift];
49  }
50 
51  char* CachedData(int offset) {
52  return &data_[offset];
53  }
54 
55  private:
56  char data_[kPageSize]; // The cached data.
57  static const int kValidityMapSize = kPageSize >> kLineShift;
58  char validity_map_[kValidityMapSize]; // One byte per line.
59 };
60 
61 class Simulator : public SimulatorBase {
62  public:
63  friend class ArmDebugger;
64  enum Register {
65  no_reg = -1,
66  r0 = 0, r1, r2, r3, r4, r5, r6, r7,
67  r8, r9, r10, r11, r12, r13, r14, r15,
68  num_registers,
69  sp = 13,
70  lr = 14,
71  pc = 15,
72  s0 = 0, s1, s2, s3, s4, s5, s6, s7,
73  s8, s9, s10, s11, s12, s13, s14, s15,
74  s16, s17, s18, s19, s20, s21, s22, s23,
75  s24, s25, s26, s27, s28, s29, s30, s31,
76  num_s_registers = 32,
77  d0 = 0, d1, d2, d3, d4, d5, d6, d7,
78  d8, d9, d10, d11, d12, d13, d14, d15,
79  d16, d17, d18, d19, d20, d21, d22, d23,
80  d24, d25, d26, d27, d28, d29, d30, d31,
81  num_d_registers = 32,
82  q0 = 0, q1, q2, q3, q4, q5, q6, q7,
83  q8, q9, q10, q11, q12, q13, q14, q15,
84  num_q_registers = 16
85  };
86 
87  explicit Simulator(Isolate* isolate);
88  ~Simulator();
89 
90  // The currently executing Simulator instance. Potentially there can be one
91  // for each native thread.
92  V8_EXPORT_PRIVATE static Simulator* current(v8::internal::Isolate* isolate);
93 
94  // Accessors for register state. Reading the pc value adheres to the ARM
95  // architecture specification and is off by a 8 from the currently executing
96  // instruction.
97  void set_register(int reg, int32_t value);
98  int32_t get_register(int reg) const;
99  double get_double_from_register_pair(int reg);
100  void set_register_pair_from_double(int reg, double* value);
101  void set_dw_register(int dreg, const int* dbl);
102 
103  // Support for VFP.
104  void get_d_register(int dreg, uint64_t* value);
105  void set_d_register(int dreg, const uint64_t* value);
106  void get_d_register(int dreg, uint32_t* value);
107  void set_d_register(int dreg, const uint32_t* value);
108  // Support for NEON.
109  template <typename T, int SIZE = kSimd128Size>
110  void get_neon_register(int reg, T (&value)[SIZE / sizeof(T)]);
111  template <typename T, int SIZE = kSimd128Size>
112  void set_neon_register(int reg, const T (&value)[SIZE / sizeof(T)]);
113 
114  void set_s_register(int reg, unsigned int value);
115  unsigned int get_s_register(int reg) const;
116 
117  void set_d_register_from_double(int dreg, const Float64 dbl) {
118  SetVFPRegister<Float64, 2>(dreg, dbl);
119  }
120  void set_d_register_from_double(int dreg, const double dbl) {
121  SetVFPRegister<double, 2>(dreg, dbl);
122  }
123 
124  Float64 get_double_from_d_register(int dreg) {
125  return GetFromVFPRegister<Float64, 2>(dreg);
126  }
127 
128  void set_s_register_from_float(int sreg, const Float32 flt) {
129  SetVFPRegister<Float32, 1>(sreg, flt);
130  }
131  void set_s_register_from_float(int sreg, const float flt) {
132  SetVFPRegister<float, 1>(sreg, flt);
133  }
134 
135  Float32 get_float_from_s_register(int sreg) {
136  return GetFromVFPRegister<Float32, 1>(sreg);
137  }
138 
139  void set_s_register_from_sinteger(int sreg, const int sint) {
140  SetVFPRegister<int, 1>(sreg, sint);
141  }
142 
143  int get_sinteger_from_s_register(int sreg) {
144  return GetFromVFPRegister<int, 1>(sreg);
145  }
146 
147  // Special case of set_register and get_register to access the raw PC value.
148  void set_pc(int32_t value);
149  int32_t get_pc() const;
150 
151  Address get_sp() const { return static_cast<Address>(get_register(sp)); }
152 
153  // Accessor to the internal simulator stack area.
154  uintptr_t StackLimit(uintptr_t c_limit) const;
155 
156  // Executes ARM instructions until the PC reaches end_sim_pc.
157  void Execute();
158 
159  template <typename Return, typename... Args>
160  Return Call(Address entry, Args... args) {
161  return VariadicCall<Return>(this, &Simulator::CallImpl, entry, args...);
162  }
163 
164  // Alternative: call a 2-argument double function.
165  template <typename Return>
166  Return CallFP(Address entry, double d0, double d1) {
167  return ConvertReturn<Return>(CallFPImpl(entry, d0, d1));
168  }
169 
170  // Push an address onto the JS stack.
171  uintptr_t PushAddress(uintptr_t address);
172 
173  // Pop an address from the JS stack.
174  uintptr_t PopAddress();
175 
176  // Debugger input.
177  void set_last_debugger_input(char* input);
178  char* last_debugger_input() { return last_debugger_input_; }
179 
180  // Redirection support.
181  static void SetRedirectInstruction(Instruction* instruction);
182 
183  // ICache checking.
184  static bool ICacheMatch(void* one, void* two);
185  static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start,
186  size_t size);
187 
188  // Returns true if pc register contains one of the 'special_values' defined
189  // below (bad_lr, end_sim_pc).
190  bool has_bad_pc() const;
191 
192  // EABI variant for double arguments in use.
193  bool use_eabi_hardfloat() {
194 #if USE_EABI_HARDFLOAT
195  return true;
196 #else
197  return false;
198 #endif
199  }
200 
201  private:
202  enum special_values {
203  // Known bad pc value to ensure that the simulator does not execute
204  // without being properly setup.
205  bad_lr = -1,
206  // A pc value used to signal the simulator to stop execution. Generally
207  // the lr is set to this value on transition from native C code to
208  // simulated execution, so that the simulator can "return" to the native
209  // C code.
210  end_sim_pc = -2
211  };
212 
213  V8_EXPORT_PRIVATE intptr_t CallImpl(Address entry, int argument_count,
214  const intptr_t* arguments);
215  intptr_t CallFPImpl(Address entry, double d0, double d1);
216 
217  // Unsupported instructions use Format to print an error and stop execution.
218  void Format(Instruction* instr, const char* format);
219 
220  // Checks if the current instruction should be executed based on its
221  // condition bits.
222  inline bool ConditionallyExecute(Instruction* instr);
223 
224  // Helper functions to set the conditional flags in the architecture state.
225  void SetNZFlags(int32_t val);
226  void SetCFlag(bool val);
227  void SetVFlag(bool val);
228  bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
229  bool BorrowFrom(int32_t left, int32_t right, int32_t carry = 1);
230  bool OverflowFrom(int32_t alu_out,
231  int32_t left,
232  int32_t right,
233  bool addition);
234 
235  inline int GetCarry() {
236  return c_flag_ ? 1 : 0;
237  }
238 
239  // Support for VFP.
240  void Compute_FPSCR_Flags(float val1, float val2);
241  void Compute_FPSCR_Flags(double val1, double val2);
242  void Copy_FPSCR_to_APSR();
243  inline float canonicalizeNaN(float value);
244  inline double canonicalizeNaN(double value);
245  inline Float32 canonicalizeNaN(Float32 value);
246  inline Float64 canonicalizeNaN(Float64 value);
247 
248  // Helper functions to decode common "addressing" modes
249  int32_t GetShiftRm(Instruction* instr, bool* carry_out);
250  int32_t GetImm(Instruction* instr, bool* carry_out);
251  int32_t ProcessPU(Instruction* instr,
252  int num_regs,
253  int operand_size,
254  intptr_t* start_address,
255  intptr_t* end_address);
256  void HandleRList(Instruction* instr, bool load);
257  void HandleVList(Instruction* inst);
258  void SoftwareInterrupt(Instruction* instr);
259 
260  // Stop helper functions.
261  inline bool isStopInstruction(Instruction* instr);
262  inline bool isWatchedStop(uint32_t bkpt_code);
263  inline bool isEnabledStop(uint32_t bkpt_code);
264  inline void EnableStop(uint32_t bkpt_code);
265  inline void DisableStop(uint32_t bkpt_code);
266  inline void IncreaseStopCounter(uint32_t bkpt_code);
267  void PrintStopInfo(uint32_t code);
268 
269  // Read and write memory.
270  // The *Ex functions are exclusive access. The writes return the strex status:
271  // 0 if the write succeeds, and 1 if the write fails.
272  inline uint8_t ReadBU(int32_t addr);
273  inline int8_t ReadB(int32_t addr);
274  uint8_t ReadExBU(int32_t addr);
275  inline void WriteB(int32_t addr, uint8_t value);
276  inline void WriteB(int32_t addr, int8_t value);
277  int WriteExB(int32_t addr, uint8_t value);
278 
279  inline uint16_t ReadHU(int32_t addr);
280  inline int16_t ReadH(int32_t addr);
281  uint16_t ReadExHU(int32_t addr);
282  // Note: Overloaded on the sign of the value.
283  inline void WriteH(int32_t addr, uint16_t value);
284  inline void WriteH(int32_t addr, int16_t value);
285  int WriteExH(int32_t addr, uint16_t value);
286 
287  inline int ReadW(int32_t addr);
288  int ReadExW(int32_t addr);
289  inline void WriteW(int32_t addr, int value);
290  int WriteExW(int32_t addr, int value);
291 
292  int32_t* ReadDW(int32_t addr);
293  void WriteDW(int32_t addr, int32_t value1, int32_t value2);
294  int32_t* ReadExDW(int32_t addr);
295  int WriteExDW(int32_t addr, int32_t value1, int32_t value2);
296 
297  // Executing is handled based on the instruction type.
298  // Both type 0 and type 1 rolled into one.
299  void DecodeType01(Instruction* instr);
300  void DecodeType2(Instruction* instr);
301  void DecodeType3(Instruction* instr);
302  void DecodeType4(Instruction* instr);
303  void DecodeType5(Instruction* instr);
304  void DecodeType6(Instruction* instr);
305  void DecodeType7(Instruction* instr);
306 
307  // CP15 coprocessor instructions.
308  void DecodeTypeCP15(Instruction* instr);
309 
310  // Support for VFP.
311  void DecodeTypeVFP(Instruction* instr);
312  void DecodeType6CoprocessorIns(Instruction* instr);
313  void DecodeSpecialCondition(Instruction* instr);
314 
315  void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
316  void DecodeVCMP(Instruction* instr);
317  void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
318  int32_t ConvertDoubleToInt(double val, bool unsigned_integer,
319  VFPRoundingMode mode);
320  void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
321 
322  // Executes one instruction.
323  void InstructionDecode(Instruction* instr);
324 
325  // ICache.
326  static void CheckICache(base::CustomMatcherHashMap* i_cache,
327  Instruction* instr);
328  static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start,
329  int size);
330  static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache,
331  void* page);
332 
333  // Handle arguments and return value for runtime FP functions.
334  void GetFpArgs(double* x, double* y, int32_t* z);
335  void SetFpResult(const double& result);
336  void TrashCallerSaveRegisters();
337 
338  template<class ReturnType, int register_size>
339  ReturnType GetFromVFPRegister(int reg_index);
340 
341  template<class InputType, int register_size>
342  void SetVFPRegister(int reg_index, const InputType& value);
343 
344  void SetSpecialRegister(SRegisterFieldMask reg_and_mask, uint32_t value);
345  uint32_t GetFromSpecialRegister(SRegister reg);
346 
347  void CallInternal(Address entry);
348 
349  // Architecture state.
350  // Saturating instructions require a Q flag to indicate saturation.
351  // There is currently no way to read the CPSR directly, and thus read the Q
352  // flag, so this is left unimplemented.
353  int32_t registers_[16];
354  bool n_flag_;
355  bool z_flag_;
356  bool c_flag_;
357  bool v_flag_;
358 
359  // VFP architecture state.
360  unsigned int vfp_registers_[num_d_registers * 2];
361  bool n_flag_FPSCR_;
362  bool z_flag_FPSCR_;
363  bool c_flag_FPSCR_;
364  bool v_flag_FPSCR_;
365 
366  // VFP rounding mode. See ARM DDI 0406B Page A2-29.
367  VFPRoundingMode FPSCR_rounding_mode_;
368  bool FPSCR_default_NaN_mode_;
369 
370  // VFP FP exception flags architecture state.
371  bool inv_op_vfp_flag_;
372  bool div_zero_vfp_flag_;
373  bool overflow_vfp_flag_;
374  bool underflow_vfp_flag_;
375  bool inexact_vfp_flag_;
376 
377  // Simulator support.
378  char* stack_;
379  bool pc_modified_;
380  int icount_;
381 
382  // Debugger input.
383  char* last_debugger_input_;
384 
385  // Registered breakpoints.
386  Instruction* break_pc_;
387  Instr break_instr_;
388 
389  v8::internal::Isolate* isolate_;
390 
391  // A stop is watched if its code is less than kNumOfWatchedStops.
392  // Only watched stops support enabling/disabling and the counter feature.
393  static const uint32_t kNumOfWatchedStops = 256;
394 
395  // Breakpoint is disabled if bit 31 is set.
396  static const uint32_t kStopDisabledBit = 1 << 31;
397 
398  // A stop is enabled, meaning the simulator will stop when meeting the
399  // instruction, if bit 31 of watched_stops_[code].count is unset.
400  // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
401  // the breakpoint was hit or gone through.
402  struct StopCountAndDesc {
403  uint32_t count;
404  char* desc;
405  };
406  StopCountAndDesc watched_stops_[kNumOfWatchedStops];
407 
408  // Synchronization primitives. See ARM DDI 0406C.b, A2.9.
409  enum class MonitorAccess {
410  Open,
411  Exclusive,
412  };
413 
414  enum class TransactionSize {
415  None = 0,
416  Byte = 1,
417  HalfWord = 2,
418  Word = 4,
419  DoubleWord = 8,
420  };
421 
422  // The least-significant bits of the address are ignored. The number of bits
423  // is implementation-defined, between 3 and 11. See ARM DDI 0406C.b, A3.4.3.
424  static const int32_t kExclusiveTaggedAddrMask = ~((1 << 11) - 1);
425 
426  class LocalMonitor {
427  public:
428  LocalMonitor();
429 
430  // These functions manage the state machine for the local monitor, but do
431  // not actually perform loads and stores. NotifyStoreExcl only returns
432  // true if the exclusive store is allowed; the global monitor will still
433  // have to be checked to see whether the memory should be updated.
434  void NotifyLoad(int32_t addr);
435  void NotifyLoadExcl(int32_t addr, TransactionSize size);
436  void NotifyStore(int32_t addr);
437  bool NotifyStoreExcl(int32_t addr, TransactionSize size);
438 
439  private:
440  void Clear();
441 
442  MonitorAccess access_state_;
443  int32_t tagged_addr_;
444  TransactionSize size_;
445  };
446 
447  class GlobalMonitor {
448  public:
449  GlobalMonitor();
450 
451  class Processor {
452  public:
453  Processor();
454 
455  private:
456  friend class GlobalMonitor;
457  // These functions manage the state machine for the global monitor, but do
458  // not actually perform loads and stores.
459  void Clear_Locked();
460  void NotifyLoadExcl_Locked(int32_t addr);
461  void NotifyStore_Locked(int32_t addr, bool is_requesting_processor);
462  bool NotifyStoreExcl_Locked(int32_t addr, bool is_requesting_processor);
463 
464  MonitorAccess access_state_;
465  int32_t tagged_addr_;
466  Processor* next_;
467  Processor* prev_;
468  // A strex can fail due to background cache evictions. Rather than
469  // simulating this, we'll just occasionally introduce cases where an
470  // exclusive store fails. This will happen once after every
471  // kMaxFailureCounter exclusive stores.
472  static const int kMaxFailureCounter = 5;
473  int failure_counter_;
474  };
475 
476  // Exposed so it can be accessed by Simulator::{Read,Write}Ex*.
477  base::Mutex mutex;
478 
479  void NotifyLoadExcl_Locked(int32_t addr, Processor* processor);
480  void NotifyStore_Locked(int32_t addr, Processor* processor);
481  bool NotifyStoreExcl_Locked(int32_t addr, Processor* processor);
482 
483  // Called when the simulator is destroyed.
484  void RemoveProcessor(Processor* processor);
485 
486  private:
487  bool IsProcessorInLinkedList_Locked(Processor* processor) const;
488  void PrependProcessor_Locked(Processor* processor);
489 
490  Processor* head_;
491  };
492 
493  LocalMonitor local_monitor_;
494  GlobalMonitor::Processor global_monitor_processor_;
495  static base::LazyInstance<GlobalMonitor>::type global_monitor_;
496 };
497 
498 } // namespace internal
499 } // namespace v8
500 
501 #endif // defined(USE_SIMULATOR)
502 #endif // V8_ARM_SIMULATOR_ARM_H_
Definition: libplatform.h:13
Definition: v8.h:3134