V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
regexp-macro-assembler-s390.cc
1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_S390
8 
9 #include "src/assembler-inl.h"
10 #include "src/base/bits.h"
11 #include "src/code-stubs.h"
12 #include "src/log.h"
13 #include "src/macro-assembler.h"
14 #include "src/regexp/regexp-macro-assembler.h"
15 #include "src/regexp/regexp-stack.h"
16 #include "src/regexp/s390/regexp-macro-assembler-s390.h"
17 #include "src/unicode.h"
18 
19 namespace v8 {
20 namespace internal {
21 
22 #ifndef V8_INTERPRETED_REGEXP
23 /*
24  * This assembler uses the following register assignment convention
25  * - r6: Temporarily stores the index of capture start after a matching pass
26  * for a global regexp.
27  * - r7: Pointer to current Code object including heap object tag.
28  * - r8: Current position in input, as negative offset from end of string.
29  * Please notice that this is the byte offset, not the character offset!
30  * - r9: Currently loaded character. Must be loaded using
31  * LoadCurrentCharacter before using any of the dispatch methods.
32  * - r13: Points to tip of backtrack stack
33  * - r10: End of input (points to byte after last character in input).
34  * - r11: Frame pointer. Used to access arguments, local variables and
35  * RegExp registers.
36  * - r12: IP register, used by assembler. Very volatile.
37  * - r15/sp : Points to tip of C stack.
38  *
39  * The remaining registers are free for computations.
40  * Each call to a public method should retain this convention.
41  *
42  * The stack will have the following structure:
43  * - fp[108] Isolate* isolate (address of the current isolate)
44  * - fp[104] direct_call (if 1, direct call from JavaScript code,
45  * if 0, call through the runtime system).
46  * - fp[100] stack_area_base (high end of the memory area to use as
47  * backtracking stack).
48  * - fp[96] capture array size (may fit multiple sets of matches)
49  * - fp[0..96] zLinux ABI register saving area
50  * --- sp when called ---
51  * --- frame pointer ----
52  * - fp[-4] direct_call (if 1, direct call from JavaScript code,
53  * if 0, call through the runtime system).
54  * - fp[-8] stack_area_base (high end of the memory area to use as
55  * backtracking stack).
56  * - fp[-12] capture array size (may fit multiple sets of matches)
57  * - fp[-16] int* capture_array (int[num_saved_registers_], for output).
58  * - fp[-20] end of input (address of end of string).
59  * - fp[-24] start of input (address of first character in string).
60  * - fp[-28] start index (character index of start).
61  * - fp[-32] void* input_string (location of a handle containing the string).
62  * - fp[-36] success counter (only for global regexps to count matches).
63  * - fp[-40] Offset of location before start of input (effectively character
64  * string start - 1). Used to initialize capture registers to a
65  * non-position.
66  * - fp[-44] At start (if 1, we are starting at the start of the
67  * string, otherwise 0)
68  * - fp[-48] register 0 (Only positions must be stored in the first
69  * - register 1 num_saved_registers_ registers)
70  * - ...
71  * - register num_registers-1
72  * --- sp ---
73  *
74  * The first num_saved_registers_ registers are initialized to point to
75  * "character -1" in the string (i.e., char_size() bytes before the first
76  * character of the string). The remaining registers start out as garbage.
77  *
78  * The data up to the return address must be placed there by the calling
79  * code and the remaining arguments are passed in registers, e.g. by calling the
80  * code entry as cast to a function with the signature:
81  * int (*match)(String input_string,
82  * int start_index,
83  * Address start,
84  * Address end,
85  * int* capture_output_array,
86  * int num_capture_registers,
87  * byte* stack_area_base,
88  * bool direct_call = false,
89  * Isolate* isolate);
90  * The call is performed by NativeRegExpMacroAssembler::Execute()
91  * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
92  */
93 
94 #define __ ACCESS_MASM(masm_)
95 
96 RegExpMacroAssemblerS390::RegExpMacroAssemblerS390(Isolate* isolate, Zone* zone,
97  Mode mode,
98  int registers_to_save)
99  : NativeRegExpMacroAssembler(isolate, zone),
100  masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize,
101  CodeObjectRequired::kYes)),
102  mode_(mode),
103  num_registers_(registers_to_save),
104  num_saved_registers_(registers_to_save),
105  entry_label_(),
106  start_label_(),
107  success_label_(),
108  backtrack_label_(),
109  exit_label_(),
110  internal_failure_label_() {
111  DCHECK_EQ(0, registers_to_save % 2);
112 
113  __ b(&entry_label_); // We'll write the entry code later.
114  // If the code gets too big or corrupted, an internal exception will be
115  // raised, and we will exit right away.
116  __ bind(&internal_failure_label_);
117  __ LoadImmP(r2, Operand(FAILURE));
118  __ Ret();
119  __ bind(&start_label_); // And then continue from here.
120 }
121 
122 RegExpMacroAssemblerS390::~RegExpMacroAssemblerS390() {
123  delete masm_;
124  // Unuse labels in case we throw away the assembler without calling GetCode.
125  entry_label_.Unuse();
126  start_label_.Unuse();
127  success_label_.Unuse();
128  backtrack_label_.Unuse();
129  exit_label_.Unuse();
130  check_preempt_label_.Unuse();
131  stack_overflow_label_.Unuse();
132  internal_failure_label_.Unuse();
133 }
134 
135 int RegExpMacroAssemblerS390::stack_limit_slack() {
136  return RegExpStack::kStackLimitSlack;
137 }
138 
139 void RegExpMacroAssemblerS390::AdvanceCurrentPosition(int by) {
140  if (by != 0) {
141  __ AddP(current_input_offset(), Operand(by * char_size()));
142  }
143 }
144 
145 void RegExpMacroAssemblerS390::AdvanceRegister(int reg, int by) {
146  DCHECK_LE(0, reg);
147  DCHECK_GT(num_registers_, reg);
148  if (by != 0) {
149  if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT) && is_int8(by)) {
150  __ AddMI(register_location(reg), Operand(by));
151  } else {
152  __ LoadP(r2, register_location(reg), r0);
153  __ mov(r0, Operand(by));
154  __ AddRR(r2, r0);
155  __ StoreP(r2, register_location(reg));
156  }
157  }
158 }
159 
160 void RegExpMacroAssemblerS390::Backtrack() {
161  CheckPreemption();
162  // Pop Code offset from backtrack stack, add Code and jump to location.
163  Pop(r2);
164  __ AddP(r2, code_pointer());
165  __ b(r2);
166 }
167 
168 void RegExpMacroAssemblerS390::Bind(Label* label) { __ bind(label); }
169 
170 void RegExpMacroAssemblerS390::CheckCharacter(uint32_t c, Label* on_equal) {
171  __ CmpLogicalP(current_character(), Operand(c));
172  BranchOrBacktrack(eq, on_equal);
173 }
174 
175 void RegExpMacroAssemblerS390::CheckCharacterGT(uc16 limit, Label* on_greater) {
176  __ CmpLogicalP(current_character(), Operand(limit));
177  BranchOrBacktrack(gt, on_greater);
178 }
179 
180 void RegExpMacroAssemblerS390::CheckAtStart(Label* on_at_start) {
181  __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
182  __ AddP(r2, current_input_offset(), Operand(-char_size()));
183  __ CmpP(r2, r3);
184  BranchOrBacktrack(eq, on_at_start);
185 }
186 
187 void RegExpMacroAssemblerS390::CheckNotAtStart(int cp_offset,
188  Label* on_not_at_start) {
189  __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
190  __ AddP(r2, current_input_offset(),
191  Operand(-char_size() + cp_offset * char_size()));
192  __ CmpP(r2, r3);
193  BranchOrBacktrack(ne, on_not_at_start);
194 }
195 
196 void RegExpMacroAssemblerS390::CheckCharacterLT(uc16 limit, Label* on_less) {
197  __ CmpLogicalP(current_character(), Operand(limit));
198  BranchOrBacktrack(lt, on_less);
199 }
200 
201 void RegExpMacroAssemblerS390::CheckGreedyLoop(Label* on_equal) {
202  Label backtrack_non_equal;
203  __ CmpP(current_input_offset(), MemOperand(backtrack_stackpointer(), 0));
204  __ bne(&backtrack_non_equal);
205  __ AddP(backtrack_stackpointer(), Operand(kPointerSize));
206 
207  BranchOrBacktrack(al, on_equal);
208  __ bind(&backtrack_non_equal);
209 }
210 
211 void RegExpMacroAssemblerS390::CheckNotBackReferenceIgnoreCase(
212  int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
213  Label fallthrough;
214  __ LoadP(r2, register_location(start_reg)); // Index of start of
215  // capture
216  __ LoadP(r3, register_location(start_reg + 1)); // Index of end
217  __ SubP(r3, r3, r2);
218 
219  // At this point, the capture registers are either both set or both cleared.
220  // If the capture length is zero, then the capture is either empty or cleared.
221  // Fall through in both cases.
222  __ beq(&fallthrough);
223 
224  // Check that there are enough characters left in the input.
225  if (read_backward) {
226  __ LoadP(r5, MemOperand(frame_pointer(), kStringStartMinusOne));
227  __ AddP(r5, r5, r3);
228  __ CmpP(current_input_offset(), r5);
229  BranchOrBacktrack(le, on_no_match);
230  } else {
231  __ AddP(r0, r3, current_input_offset());
232  BranchOrBacktrack(gt, on_no_match);
233  }
234 
235  if (mode_ == LATIN1) {
236  Label success;
237  Label fail;
238  Label loop_check;
239 
240  // r2 - offset of start of capture
241  // r3 - length of capture
242  __ AddP(r2, end_of_input_address());
243  __ AddP(r4, current_input_offset(), end_of_input_address());
244  if (read_backward) {
245  __ SubP(r4, r4, r3); // Offset by length when matching backwards.
246  }
247  __ mov(r1, Operand::Zero());
248 
249  // r1 - Loop index
250  // r2 - Address of start of capture.
251  // r4 - Address of current input position.
252 
253  Label loop;
254  __ bind(&loop);
255  __ LoadlB(r5, MemOperand(r2, r1));
256  __ LoadlB(r6, MemOperand(r4, r1));
257 
258  __ CmpP(r6, r5);
259  __ beq(&loop_check);
260 
261  // Mismatch, try case-insensitive match (converting letters to lower-case).
262  __ Or(r5, Operand(0x20)); // Convert capture character to lower-case.
263  __ Or(r6, Operand(0x20)); // Also convert input character.
264  __ CmpP(r6, r5);
265  __ bne(&fail);
266  __ SubP(r5, Operand('a'));
267  __ CmpLogicalP(r5, Operand('z' - 'a')); // Is r5 a lowercase letter?
268  __ ble(&loop_check); // In range 'a'-'z'.
269  // Latin-1: Check for values in range [224,254] but not 247.
270  __ SubP(r5, Operand(224 - 'a'));
271  __ CmpLogicalP(r5, Operand(254 - 224));
272  __ bgt(&fail); // Weren't Latin-1 letters.
273  __ CmpLogicalP(r5, Operand(247 - 224)); // Check for 247.
274  __ beq(&fail);
275 
276  __ bind(&loop_check);
277  __ la(r1, MemOperand(r1, char_size()));
278  __ CmpP(r1, r3);
279  __ blt(&loop);
280  __ b(&success);
281 
282  __ bind(&fail);
283  BranchOrBacktrack(al, on_no_match);
284 
285  __ bind(&success);
286  // Compute new value of character position after the matched part.
287  __ SubP(current_input_offset(), r4, end_of_input_address());
288  if (read_backward) {
289  __ LoadP(r2, register_location(start_reg)); // Index of start of capture
290  __ LoadP(r3,
291  register_location(start_reg + 1)); // Index of end of capture
292  __ AddP(current_input_offset(), current_input_offset(), r2);
293  __ SubP(current_input_offset(), current_input_offset(), r3);
294  }
295  __ AddP(current_input_offset(), r1);
296  } else {
297  DCHECK(mode_ == UC16);
298  int argument_count = 4;
299  __ PrepareCallCFunction(argument_count, r4);
300 
301  // r2 - offset of start of capture
302  // r3 - length of capture
303 
304  // Put arguments into arguments registers.
305  // Parameters are
306  // r2: Address byte_offset1 - Address captured substring's start.
307  // r3: Address byte_offset2 - Address of current character position.
308  // r4: size_t byte_length - length of capture in bytes(!)
309  // r5: Isolate* isolate or 0 if unicode flag.
310 
311  // Address of start of capture.
312  __ AddP(r2, end_of_input_address());
313  // Length of capture.
314  __ LoadRR(r4, r3);
315  // Save length in callee-save register for use on return.
316  __ LoadRR(r6, r3);
317  // Address of current input position.
318  __ AddP(r3, current_input_offset(), end_of_input_address());
319  if (read_backward) {
320  __ SubP(r3, r3, r6);
321  }
322 // Isolate.
323 #ifdef V8_INTL_SUPPORT
324  if (unicode) {
325  __ LoadImmP(r5, Operand::Zero());
326  } else // NOLINT
327 #endif // V8_INTL_SUPPORT
328  {
329  __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
330  }
331 
332  {
333  AllowExternalCallThatCantCauseGC scope(masm_);
334  ExternalReference function =
335  ExternalReference::re_case_insensitive_compare_uc16(isolate());
336  __ CallCFunction(function, argument_count);
337  }
338 
339  // Check if function returned non-zero for success or zero for failure.
340  __ CmpP(r2, Operand::Zero());
341  BranchOrBacktrack(eq, on_no_match);
342 
343  // On success, advance position by length of capture.
344  if (read_backward) {
345  __ SubP(current_input_offset(), current_input_offset(), r6);
346  } else {
347  __ AddP(current_input_offset(), current_input_offset(), r6);
348  }
349  }
350 
351  __ bind(&fallthrough);
352 }
353 
354 void RegExpMacroAssemblerS390::CheckNotBackReference(int start_reg,
355  bool read_backward,
356  Label* on_no_match) {
357  Label fallthrough;
358  Label success;
359 
360  // Find length of back-referenced capture.
361  __ LoadP(r2, register_location(start_reg));
362  __ LoadP(r3, register_location(start_reg + 1));
363  __ SubP(r3, r3, r2); // Length to check.
364 
365  // At this point, the capture registers are either both set or both cleared.
366  // If the capture length is zero, then the capture is either empty or cleared.
367  // Fall through in both cases.
368  __ beq(&fallthrough);
369 
370  // Check that there are enough characters left in the input.
371  if (read_backward) {
372  __ LoadP(r5, MemOperand(frame_pointer(), kStringStartMinusOne));
373  __ AddP(r5, r5, r3);
374  __ CmpP(current_input_offset(), r5);
375  BranchOrBacktrack(le, on_no_match);
376  } else {
377  __ AddP(r0, r3, current_input_offset());
378  BranchOrBacktrack(gt, on_no_match, cr0);
379  }
380 
381  // r2 - offset of start of capture
382  // r3 - length of capture
383  __ la(r2, MemOperand(r2, end_of_input_address()));
384  __ la(r4, MemOperand(current_input_offset(), end_of_input_address()));
385  if (read_backward) {
386  __ SubP(r4, r4, r3); // Offset by length when matching backwards.
387  }
388  __ mov(r1, Operand::Zero());
389 
390  Label loop;
391  __ bind(&loop);
392  if (mode_ == LATIN1) {
393  __ LoadlB(r5, MemOperand(r2, r1));
394  __ LoadlB(r6, MemOperand(r4, r1));
395  } else {
396  DCHECK(mode_ == UC16);
397  __ LoadLogicalHalfWordP(r5, MemOperand(r2, r1));
398  __ LoadLogicalHalfWordP(r6, MemOperand(r4, r1));
399  }
400  __ la(r1, MemOperand(r1, char_size()));
401  __ CmpP(r5, r6);
402  BranchOrBacktrack(ne, on_no_match);
403  __ CmpP(r1, r3);
404  __ blt(&loop);
405 
406  // Move current character position to position after match.
407  __ SubP(current_input_offset(), r4, end_of_input_address());
408  if (read_backward) {
409  __ LoadP(r2, register_location(start_reg)); // Index of start of capture
410  __ LoadP(r3, register_location(start_reg + 1)); // Index of end of capture
411  __ AddP(current_input_offset(), current_input_offset(), r2);
412  __ SubP(current_input_offset(), current_input_offset(), r3);
413  }
414  __ AddP(current_input_offset(), r1);
415 
416  __ bind(&fallthrough);
417 }
418 
419 void RegExpMacroAssemblerS390::CheckNotCharacter(unsigned c,
420  Label* on_not_equal) {
421  __ CmpLogicalP(current_character(), Operand(c));
422  BranchOrBacktrack(ne, on_not_equal);
423 }
424 
425 void RegExpMacroAssemblerS390::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
426  Label* on_equal) {
427  __ AndP(r2, current_character(), Operand(mask));
428  if (c != 0) {
429  __ CmpLogicalP(r2, Operand(c));
430  }
431  BranchOrBacktrack(eq, on_equal);
432 }
433 
434 void RegExpMacroAssemblerS390::CheckNotCharacterAfterAnd(unsigned c,
435  unsigned mask,
436  Label* on_not_equal) {
437  __ AndP(r2, current_character(), Operand(mask));
438  if (c != 0) {
439  __ CmpLogicalP(r2, Operand(c));
440  }
441  BranchOrBacktrack(ne, on_not_equal);
442 }
443 
444 void RegExpMacroAssemblerS390::CheckNotCharacterAfterMinusAnd(
445  uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
446  DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
447  __ lay(r2, MemOperand(current_character(), -minus));
448  __ And(r2, Operand(mask));
449  if (c != 0) {
450  __ CmpLogicalP(r2, Operand(c));
451  }
452  BranchOrBacktrack(ne, on_not_equal);
453 }
454 
455 void RegExpMacroAssemblerS390::CheckCharacterInRange(uc16 from, uc16 to,
456  Label* on_in_range) {
457  __ lay(r2, MemOperand(current_character(), -from));
458  __ CmpLogicalP(r2, Operand(to - from));
459  BranchOrBacktrack(le, on_in_range); // Unsigned lower-or-same condition.
460 }
461 
462 void RegExpMacroAssemblerS390::CheckCharacterNotInRange(
463  uc16 from, uc16 to, Label* on_not_in_range) {
464  __ lay(r2, MemOperand(current_character(), -from));
465  __ CmpLogicalP(r2, Operand(to - from));
466  BranchOrBacktrack(gt, on_not_in_range); // Unsigned higher condition.
467 }
468 
469 void RegExpMacroAssemblerS390::CheckBitInTable(Handle<ByteArray> table,
470  Label* on_bit_set) {
471  __ mov(r2, Operand(table));
472  Register index = current_character();
473  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
474  __ AndP(r3, current_character(), Operand(kTableSize - 1));
475  index = r3;
476  }
477  __ LoadlB(r2,
478  MemOperand(r2, index, (ByteArray::kHeaderSize - kHeapObjectTag)));
479  __ CmpP(r2, Operand::Zero());
480  BranchOrBacktrack(ne, on_bit_set);
481 }
482 
483 bool RegExpMacroAssemblerS390::CheckSpecialCharacterClass(uc16 type,
484  Label* on_no_match) {
485  // Range checks (c in min..max) are generally implemented by an unsigned
486  // (c - min) <= (max - min) check
487  switch (type) {
488  case 's':
489  // Match space-characters
490  if (mode_ == LATIN1) {
491  // One byte space characters are '\t'..'\r', ' ' and \u00a0.
492  Label success;
493  __ CmpP(current_character(), Operand(' '));
494  __ beq(&success);
495  // Check range 0x09..0x0D
496  __ SubP(r2, current_character(), Operand('\t'));
497  __ CmpLogicalP(r2, Operand('\r' - '\t'));
498  __ ble(&success);
499  // \u00a0 (NBSP).
500  __ CmpLogicalP(r2, Operand(0x00A0 - '\t'));
501  BranchOrBacktrack(ne, on_no_match);
502  __ bind(&success);
503  return true;
504  }
505  return false;
506  case 'S':
507  // The emitted code for generic character classes is good enough.
508  return false;
509  case 'd':
510  // Match ASCII digits ('0'..'9')
511  __ SubP(r2, current_character(), Operand('0'));
512  __ CmpLogicalP(r2, Operand('9' - '0'));
513  BranchOrBacktrack(gt, on_no_match);
514  return true;
515  case 'D':
516  // Match non ASCII-digits
517  __ SubP(r2, current_character(), Operand('0'));
518  __ CmpLogicalP(r2, Operand('9' - '0'));
519  BranchOrBacktrack(le, on_no_match);
520  return true;
521  case '.': {
522  // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
523  __ XorP(r2, current_character(), Operand(0x01));
524  // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
525  __ SubP(r2, Operand(0x0B));
526  __ CmpLogicalP(r2, Operand(0x0C - 0x0B));
527  BranchOrBacktrack(le, on_no_match);
528  if (mode_ == UC16) {
529  // Compare original value to 0x2028 and 0x2029, using the already
530  // computed (current_char ^ 0x01 - 0x0B). I.e., check for
531  // 0x201D (0x2028 - 0x0B) or 0x201E.
532  __ SubP(r2, Operand(0x2028 - 0x0B));
533  __ CmpLogicalP(r2, Operand(1));
534  BranchOrBacktrack(le, on_no_match);
535  }
536  return true;
537  }
538  case 'n': {
539  // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
540  __ XorP(r2, current_character(), Operand(0x01));
541  // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
542  __ SubP(r2, Operand(0x0B));
543  __ CmpLogicalP(r2, Operand(0x0C - 0x0B));
544  if (mode_ == LATIN1) {
545  BranchOrBacktrack(gt, on_no_match);
546  } else {
547  Label done;
548  __ ble(&done);
549  // Compare original value to 0x2028 and 0x2029, using the already
550  // computed (current_char ^ 0x01 - 0x0B). I.e., check for
551  // 0x201D (0x2028 - 0x0B) or 0x201E.
552  __ SubP(r2, Operand(0x2028 - 0x0B));
553  __ CmpLogicalP(r2, Operand(1));
554  BranchOrBacktrack(gt, on_no_match);
555  __ bind(&done);
556  }
557  return true;
558  }
559  case 'w': {
560  if (mode_ != LATIN1) {
561  // Table is 1256 entries, so all LATIN1 characters can be tested.
562  __ CmpP(current_character(), Operand('z'));
563  BranchOrBacktrack(gt, on_no_match);
564  }
565  ExternalReference map =
566  ExternalReference::re_word_character_map(isolate());
567  __ mov(r2, Operand(map));
568  __ LoadlB(r2, MemOperand(r2, current_character()));
569  __ CmpLogicalP(r2, Operand::Zero());
570  BranchOrBacktrack(eq, on_no_match);
571  return true;
572  }
573  case 'W': {
574  Label done;
575  if (mode_ != LATIN1) {
576  // Table is 256 entries, so all LATIN characters can be tested.
577  __ CmpLogicalP(current_character(), Operand('z'));
578  __ bgt(&done);
579  }
580  ExternalReference map =
581  ExternalReference::re_word_character_map(isolate());
582  __ mov(r2, Operand(map));
583  __ LoadlB(r2, MemOperand(r2, current_character()));
584  __ CmpLogicalP(r2, Operand::Zero());
585  BranchOrBacktrack(ne, on_no_match);
586  if (mode_ != LATIN1) {
587  __ bind(&done);
588  }
589  return true;
590  }
591  case '*':
592  // Match any character.
593  return true;
594  // No custom implementation (yet): s(UC16), S(UC16).
595  default:
596  return false;
597  }
598 }
599 
600 void RegExpMacroAssemblerS390::Fail() {
601  __ LoadImmP(r2, Operand(FAILURE));
602  __ b(&exit_label_);
603 }
604 
605 Handle<HeapObject> RegExpMacroAssemblerS390::GetCode(Handle<String> source) {
606  Label return_r2;
607 
608  // Finalize code - write the entry point code now we know how many
609  // registers we need.
610 
611  // Entry code:
612  __ bind(&entry_label_);
613 
614  // Tell the system that we have a stack frame. Because the type
615  // is MANUAL, no is generated.
616  FrameScope scope(masm_, StackFrame::MANUAL);
617 
618  // Ensure register assigments are consistent with callee save mask
619  DCHECK(r6.bit() & kRegExpCalleeSaved);
620  DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
621  DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
622  DCHECK(current_character().bit() & kRegExpCalleeSaved);
623  DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
624  DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
625  DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
626 
627  // zLinux ABI
628  // Incoming parameters:
629  // r2: input_string
630  // r3: start_index
631  // r4: start addr
632  // r5: end addr
633  // r6: capture output arrray
634  // Requires us to save the callee-preserved registers r6-r13
635  // General convention is to also save r14 (return addr) and
636  // sp/r15 as well in a single STM/STMG
637  __ StoreMultipleP(r6, sp, MemOperand(sp, 6 * kPointerSize));
638 
639  // Load stack parameters from caller stack frame
640  __ LoadMultipleP(r7, r9,
641  MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
642  // r7 = capture array size
643  // r8 = stack area base
644  // r9 = direct call
645 
646  // Actually emit code to start a new stack frame.
647  // Push arguments
648  // Save callee-save registers.
649  // Start new stack frame.
650  // Store link register in existing stack-cell.
651  // Order here should correspond to order of offset constants in header file.
652  //
653  // Set frame pointer in space for it if this is not a direct call
654  // from generated code.
655  __ LoadRR(frame_pointer(), sp);
656  __ lay(sp, MemOperand(sp, -10 * kPointerSize));
657  __ mov(r1, Operand::Zero()); // success counter
658  __ LoadRR(r0, r1); // offset of location
659  __ StoreMultipleP(r0, r9, MemOperand(sp, 0));
660 
661  // Check if we have space on the stack for registers.
662  Label stack_limit_hit;
663  Label stack_ok;
664 
665  ExternalReference stack_limit =
666  ExternalReference::address_of_stack_limit(isolate());
667  __ mov(r2, Operand(stack_limit));
668  __ LoadP(r2, MemOperand(r2));
669  __ SubP(r2, sp, r2);
670  // Handle it if the stack pointer is already below the stack limit.
671  __ ble(&stack_limit_hit);
672  // Check if there is room for the variable number of registers above
673  // the stack limit.
674  __ CmpLogicalP(r2, Operand(num_registers_ * kPointerSize));
675  __ bge(&stack_ok);
676  // Exit with OutOfMemory exception. There is not enough space on the stack
677  // for our working registers.
678  __ mov(r2, Operand(EXCEPTION));
679  __ b(&return_r2);
680 
681  __ bind(&stack_limit_hit);
682  CallCheckStackGuardState(r2);
683  __ CmpP(r2, Operand::Zero());
684  // If returned value is non-zero, we exit with the returned value as result.
685  __ bne(&return_r2);
686 
687  __ bind(&stack_ok);
688 
689  // Allocate space on stack for registers.
690  __ lay(sp, MemOperand(sp, (-num_registers_ * kPointerSize)));
691  // Load string end.
692  __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
693  // Load input start.
694  __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
695  // Find negative length (offset of start relative to end).
696  __ SubP(current_input_offset(), r4, end_of_input_address());
697  __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
698  // Set r1 to address of char before start of the input string
699  // (effectively string position -1).
700  __ LoadRR(r1, r4);
701  __ SubP(r1, current_input_offset(), Operand(char_size()));
702  if (mode_ == UC16) {
703  __ ShiftLeftP(r0, r3, Operand(1));
704  __ SubP(r1, r1, r0);
705  } else {
706  __ SubP(r1, r1, r3);
707  }
708  // Store this value in a local variable, for use when clearing
709  // position registers.
710  __ StoreP(r1, MemOperand(frame_pointer(), kStringStartMinusOne));
711 
712  // Initialize code pointer register
713  __ mov(code_pointer(), Operand(masm_->CodeObject()));
714 
715  Label load_char_start_regexp, start_regexp;
716  // Load newline if index is at start, previous character otherwise.
717  __ CmpP(r3, Operand::Zero());
718  __ bne(&load_char_start_regexp);
719  __ mov(current_character(), Operand('\n'));
720  __ b(&start_regexp);
721 
722  // Global regexp restarts matching here.
723  __ bind(&load_char_start_regexp);
724  // Load previous char as initial value of current character register.
725  LoadCurrentCharacterUnchecked(-1, 1);
726  __ bind(&start_regexp);
727 
728  // Initialize on-stack registers.
729  if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
730  // Fill saved registers with initial value = start offset - 1
731  if (num_saved_registers_ > 8) {
732  // One slot beyond address of register 0.
733  __ lay(r3, MemOperand(frame_pointer(), kRegisterZero + kPointerSize));
734  __ LoadImmP(r4, Operand(num_saved_registers_));
735  Label init_loop;
736  __ bind(&init_loop);
737  __ StoreP(r1, MemOperand(r3, -kPointerSize));
738  __ lay(r3, MemOperand(r3, -kPointerSize));
739  __ BranchOnCount(r4, &init_loop);
740  } else {
741  for (int i = 0; i < num_saved_registers_; i++) {
742  __ StoreP(r1, register_location(i));
743  }
744  }
745  }
746 
747  // Initialize backtrack stack pointer.
748  __ LoadP(backtrack_stackpointer(),
749  MemOperand(frame_pointer(), kStackHighEnd));
750 
751  __ b(&start_label_);
752 
753  // Exit code:
754  if (success_label_.is_linked()) {
755  // Save captures when successful.
756  __ bind(&success_label_);
757  if (num_saved_registers_ > 0) {
758  // copy captures to output
759  __ LoadP(r0, MemOperand(frame_pointer(), kInputStart));
760  __ LoadP(r2, MemOperand(frame_pointer(), kRegisterOutput));
761  __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
762  __ SubP(r0, end_of_input_address(), r0);
763  // r0 is length of input in bytes.
764  if (mode_ == UC16) {
765  __ ShiftRightP(r0, r0, Operand(1));
766  }
767  // r0 is length of input in characters.
768  __ AddP(r0, r4);
769  // r0 is length of string in characters.
770 
771  DCHECK_EQ(0, num_saved_registers_ % 2);
772  // Always an even number of capture registers. This allows us to
773  // unroll the loop once to add an operation between a load of a register
774  // and the following use of that register.
775  __ lay(r2, MemOperand(r2, num_saved_registers_ * kIntSize));
776  for (int i = 0; i < num_saved_registers_;) {
777  if ((false) && i < num_saved_registers_ - 4) {
778  // TODO(john.yan): Can be optimized by SIMD instructions
779  __ LoadMultipleP(r3, r6, register_location(i + 3));
780  if (mode_ == UC16) {
781  __ ShiftRightArithP(r3, r3, Operand(1));
782  __ ShiftRightArithP(r4, r4, Operand(1));
783  __ ShiftRightArithP(r5, r5, Operand(1));
784  __ ShiftRightArithP(r6, r6, Operand(1));
785  }
786  __ AddP(r3, r0);
787  __ AddP(r4, r0);
788  __ AddP(r5, r0);
789  __ AddP(r6, r0);
790  __ StoreW(r3,
791  MemOperand(r2, -(num_saved_registers_ - i - 3) * kIntSize));
792  __ StoreW(r4,
793  MemOperand(r2, -(num_saved_registers_ - i - 2) * kIntSize));
794  __ StoreW(r5,
795  MemOperand(r2, -(num_saved_registers_ - i - 1) * kIntSize));
796  __ StoreW(r6, MemOperand(r2, -(num_saved_registers_ - i) * kIntSize));
797  i += 4;
798  } else {
799  __ LoadMultipleP(r3, r4, register_location(i + 1));
800  if (mode_ == UC16) {
801  __ ShiftRightArithP(r3, r3, Operand(1));
802  __ ShiftRightArithP(r4, r4, Operand(1));
803  }
804  __ AddP(r3, r0);
805  __ AddP(r4, r0);
806  __ StoreW(r3,
807  MemOperand(r2, -(num_saved_registers_ - i - 1) * kIntSize));
808  __ StoreW(r4, MemOperand(r2, -(num_saved_registers_ - i) * kIntSize));
809  i += 2;
810  }
811  }
812  if (global_with_zero_length_check()) {
813  // Keep capture start in r6 for the zero-length check later.
814  __ LoadP(r6, register_location(0));
815  }
816  }
817 
818  if (global()) {
819  // Restart matching if the regular expression is flagged as global.
820  __ LoadP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
821  __ LoadP(r3, MemOperand(frame_pointer(), kNumOutputRegisters));
822  __ LoadP(r4, MemOperand(frame_pointer(), kRegisterOutput));
823  // Increment success counter.
824  __ AddP(r2, Operand(1));
825  __ StoreP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
826  // Capture results have been stored, so the number of remaining global
827  // output registers is reduced by the number of stored captures.
828  __ SubP(r3, Operand(num_saved_registers_));
829  // Check whether we have enough room for another set of capture results.
830  __ CmpP(r3, Operand(num_saved_registers_));
831  __ blt(&return_r2);
832 
833  __ StoreP(r3, MemOperand(frame_pointer(), kNumOutputRegisters));
834  // Advance the location for output.
835  __ AddP(r4, Operand(num_saved_registers_ * kIntSize));
836  __ StoreP(r4, MemOperand(frame_pointer(), kRegisterOutput));
837 
838  // Prepare r2 to initialize registers with its value in the next run.
839  __ LoadP(r2, MemOperand(frame_pointer(), kStringStartMinusOne));
840 
841  if (global_with_zero_length_check()) {
842  // Special case for zero-length matches.
843  // r6: capture start index
844  __ CmpP(current_input_offset(), r6);
845  // Not a zero-length match, restart.
846  __ bne(&load_char_start_regexp);
847  // Offset from the end is zero if we already reached the end.
848  __ CmpP(current_input_offset(), Operand::Zero());
849  __ beq(&exit_label_);
850  // Advance current position after a zero-length match.
851  Label advance;
852  __ bind(&advance);
853  __ AddP(current_input_offset(), Operand((mode_ == UC16) ? 2 : 1));
854  if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
855  }
856 
857  __ b(&load_char_start_regexp);
858  } else {
859  __ LoadImmP(r2, Operand(SUCCESS));
860  }
861  }
862 
863  // Exit and return r2
864  __ bind(&exit_label_);
865  if (global()) {
866  __ LoadP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
867  }
868 
869  __ bind(&return_r2);
870  // Skip sp past regexp registers and local variables..
871  __ LoadRR(sp, frame_pointer());
872  // Restore registers r6..r15.
873  __ LoadMultipleP(r6, sp, MemOperand(sp, 6 * kPointerSize));
874 
875  __ b(r14);
876 
877  // Backtrack code (branch target for conditional backtracks).
878  if (backtrack_label_.is_linked()) {
879  __ bind(&backtrack_label_);
880  Backtrack();
881  }
882 
883  Label exit_with_exception;
884 
885  // Preempt-code
886  if (check_preempt_label_.is_linked()) {
887  SafeCallTarget(&check_preempt_label_);
888 
889  CallCheckStackGuardState(r2);
890  __ CmpP(r2, Operand::Zero());
891  // If returning non-zero, we should end execution with the given
892  // result as return value.
893  __ bne(&return_r2);
894 
895  // String might have moved: Reload end of string from frame.
896  __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
897  SafeReturn();
898  }
899 
900  // Backtrack stack overflow code.
901  if (stack_overflow_label_.is_linked()) {
902  SafeCallTarget(&stack_overflow_label_);
903  // Reached if the backtrack-stack limit has been hit.
904  Label grow_failed;
905 
906  // Call GrowStack(backtrack_stackpointer(), &stack_base)
907  static const int num_arguments = 3;
908  __ PrepareCallCFunction(num_arguments, r2);
909  __ LoadRR(r2, backtrack_stackpointer());
910  __ AddP(r3, frame_pointer(), Operand(kStackHighEnd));
911  __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
912  ExternalReference grow_stack = ExternalReference::re_grow_stack(isolate());
913  __ CallCFunction(grow_stack, num_arguments);
914  // If return nullptr, we have failed to grow the stack, and
915  // must exit with a stack-overflow exception.
916  __ CmpP(r2, Operand::Zero());
917  __ beq(&exit_with_exception);
918  // Otherwise use return value as new stack pointer.
919  __ LoadRR(backtrack_stackpointer(), r2);
920  // Restore saved registers and continue.
921  SafeReturn();
922  }
923 
924  if (exit_with_exception.is_linked()) {
925  // If any of the code above needed to exit with an exception.
926  __ bind(&exit_with_exception);
927  // Exit with Result EXCEPTION(-1) to signal thrown exception.
928  __ LoadImmP(r2, Operand(EXCEPTION));
929  __ b(&return_r2);
930  }
931 
932  CodeDesc code_desc;
933  masm_->GetCode(isolate(), &code_desc);
934  Handle<Code> code = isolate()->factory()->NewCode(code_desc, Code::REGEXP,
935  masm_->CodeObject());
936  PROFILE(masm_->isolate(),
937  RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
938  return Handle<HeapObject>::cast(code);
939 }
940 
941 void RegExpMacroAssemblerS390::GoTo(Label* to) { BranchOrBacktrack(al, to); }
942 
943 void RegExpMacroAssemblerS390::IfRegisterGE(int reg, int comparand,
944  Label* if_ge) {
945  __ LoadP(r2, register_location(reg), r0);
946  __ CmpP(r2, Operand(comparand));
947  BranchOrBacktrack(ge, if_ge);
948 }
949 
950 void RegExpMacroAssemblerS390::IfRegisterLT(int reg, int comparand,
951  Label* if_lt) {
952  __ LoadP(r2, register_location(reg), r0);
953  __ CmpP(r2, Operand(comparand));
954  BranchOrBacktrack(lt, if_lt);
955 }
956 
957 void RegExpMacroAssemblerS390::IfRegisterEqPos(int reg, Label* if_eq) {
958  __ LoadP(r2, register_location(reg), r0);
959  __ CmpP(r2, current_input_offset());
960  BranchOrBacktrack(eq, if_eq);
961 }
962 
963 RegExpMacroAssembler::IrregexpImplementation
964 RegExpMacroAssemblerS390::Implementation() {
965  return kS390Implementation;
966 }
967 
968 void RegExpMacroAssemblerS390::LoadCurrentCharacter(int cp_offset,
969  Label* on_end_of_input,
970  bool check_bounds,
971  int characters) {
972  DCHECK(cp_offset < (1 << 30)); // Be sane! (And ensure negation works)
973  if (check_bounds) {
974  if (cp_offset >= 0) {
975  CheckPosition(cp_offset + characters - 1, on_end_of_input);
976  } else {
977  CheckPosition(cp_offset, on_end_of_input);
978  }
979  }
980  LoadCurrentCharacterUnchecked(cp_offset, characters);
981 }
982 
983 void RegExpMacroAssemblerS390::PopCurrentPosition() {
984  Pop(current_input_offset());
985 }
986 
987 void RegExpMacroAssemblerS390::PopRegister(int register_index) {
988  Pop(r2);
989  __ StoreP(r2, register_location(register_index));
990 }
991 
992 void RegExpMacroAssemblerS390::PushBacktrack(Label* label) {
993  if (label->is_bound()) {
994  int target = label->pos();
995  __ mov(r2, Operand(target + Code::kHeaderSize - kHeapObjectTag));
996  } else {
997  masm_->load_label_offset(r2, label);
998  }
999  Push(r2);
1000  CheckStackLimit();
1001 }
1002 
1003 void RegExpMacroAssemblerS390::PushCurrentPosition() {
1004  Push(current_input_offset());
1005 }
1006 
1007 void RegExpMacroAssemblerS390::PushRegister(int register_index,
1008  StackCheckFlag check_stack_limit) {
1009  __ LoadP(r2, register_location(register_index), r0);
1010  Push(r2);
1011  if (check_stack_limit) CheckStackLimit();
1012 }
1013 
1014 void RegExpMacroAssemblerS390::ReadCurrentPositionFromRegister(int reg) {
1015  __ LoadP(current_input_offset(), register_location(reg), r0);
1016 }
1017 
1018 void RegExpMacroAssemblerS390::ReadStackPointerFromRegister(int reg) {
1019  __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
1020  __ LoadP(r2, MemOperand(frame_pointer(), kStackHighEnd));
1021  __ AddP(backtrack_stackpointer(), r2);
1022 }
1023 
1024 void RegExpMacroAssemblerS390::SetCurrentPositionFromEnd(int by) {
1025  Label after_position;
1026  __ CmpP(current_input_offset(), Operand(-by * char_size()));
1027  __ bge(&after_position);
1028  __ mov(current_input_offset(), Operand(-by * char_size()));
1029  // On RegExp code entry (where this operation is used), the character before
1030  // the current position is expected to be already loaded.
1031  // We have advanced the position, so it's safe to read backwards.
1032  LoadCurrentCharacterUnchecked(-1, 1);
1033  __ bind(&after_position);
1034 }
1035 
1036 void RegExpMacroAssemblerS390::SetRegister(int register_index, int to) {
1037  DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
1038  __ mov(r2, Operand(to));
1039  __ StoreP(r2, register_location(register_index));
1040 }
1041 
1042 bool RegExpMacroAssemblerS390::Succeed() {
1043  __ b(&success_label_);
1044  return global();
1045 }
1046 
1047 void RegExpMacroAssemblerS390::WriteCurrentPositionToRegister(int reg,
1048  int cp_offset) {
1049  if (cp_offset == 0) {
1050  __ StoreP(current_input_offset(), register_location(reg));
1051  } else {
1052  __ AddP(r2, current_input_offset(), Operand(cp_offset * char_size()));
1053  __ StoreP(r2, register_location(reg));
1054  }
1055 }
1056 
1057 void RegExpMacroAssemblerS390::ClearRegisters(int reg_from, int reg_to) {
1058  DCHECK(reg_from <= reg_to);
1059  __ LoadP(r2, MemOperand(frame_pointer(), kStringStartMinusOne));
1060  for (int reg = reg_from; reg <= reg_to; reg++) {
1061  __ StoreP(r2, register_location(reg));
1062  }
1063 }
1064 
1065 void RegExpMacroAssemblerS390::WriteStackPointerToRegister(int reg) {
1066  __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
1067  __ SubP(r2, backtrack_stackpointer(), r3);
1068  __ StoreP(r2, register_location(reg));
1069 }
1070 
1071 // Private methods:
1072 
1073 void RegExpMacroAssemblerS390::CallCheckStackGuardState(Register scratch) {
1074  static const int num_arguments = 3;
1075  __ PrepareCallCFunction(num_arguments, scratch);
1076  // RegExp code frame pointer.
1077  __ LoadRR(r4, frame_pointer());
1078  // Code of self.
1079  __ mov(r3, Operand(masm_->CodeObject()));
1080  // r2 becomes return address pointer.
1081  __ lay(r2, MemOperand(sp, kStackFrameRASlot * kPointerSize));
1082  ExternalReference stack_guard_check =
1083  ExternalReference::re_check_stack_guard_state(isolate());
1084  CallCFunctionUsingStub(stack_guard_check, num_arguments);
1085 }
1086 
1087 // Helper function for reading a value out of a stack frame.
1088 template <typename T>
1089 static T& frame_entry(Address re_frame, int frame_offset) {
1090  DCHECK_EQ(kPointerSize, sizeof(T));
1091 #ifdef V8_TARGET_ARCH_S390X
1092  return reinterpret_cast<T&>(Memory<uint64_t>(re_frame + frame_offset));
1093 #else
1094  return reinterpret_cast<T&>(Memory<uint32_t>(re_frame + frame_offset));
1095 #endif
1096 }
1097 
1098 template <typename T>
1099 static T* frame_entry_address(Address re_frame, int frame_offset) {
1100  return reinterpret_cast<T*>(re_frame + frame_offset);
1101 }
1102 
1103 int RegExpMacroAssemblerS390::CheckStackGuardState(Address* return_address,
1104  Address raw_code,
1105  Address re_frame) {
1106  Code re_code = Code::cast(ObjectPtr(raw_code));
1107  return NativeRegExpMacroAssembler::CheckStackGuardState(
1108  frame_entry<Isolate*>(re_frame, kIsolate),
1109  frame_entry<intptr_t>(re_frame, kStartIndex),
1110  frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
1111  re_code, frame_entry_address<Address>(re_frame, kInputString),
1112  frame_entry_address<const byte*>(re_frame, kInputStart),
1113  frame_entry_address<const byte*>(re_frame, kInputEnd));
1114 }
1115 
1116 MemOperand RegExpMacroAssemblerS390::register_location(int register_index) {
1117  DCHECK(register_index < (1 << 30));
1118  if (num_registers_ <= register_index) {
1119  num_registers_ = register_index + 1;
1120  }
1121  return MemOperand(frame_pointer(),
1122  kRegisterZero - register_index * kPointerSize);
1123 }
1124 
1125 void RegExpMacroAssemblerS390::CheckPosition(int cp_offset,
1126  Label* on_outside_input) {
1127  if (cp_offset >= 0) {
1128  __ CmpP(current_input_offset(), Operand(-cp_offset * char_size()));
1129  BranchOrBacktrack(ge, on_outside_input);
1130  } else {
1131  __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
1132  __ AddP(r2, current_input_offset(), Operand(cp_offset * char_size()));
1133  __ CmpP(r2, r3);
1134  BranchOrBacktrack(le, on_outside_input);
1135  }
1136 }
1137 
1138 void RegExpMacroAssemblerS390::BranchOrBacktrack(Condition condition, Label* to,
1139  CRegister cr) {
1140  if (condition == al) { // Unconditional.
1141  if (to == nullptr) {
1142  Backtrack();
1143  return;
1144  }
1145  __ b(to);
1146  return;
1147  }
1148  if (to == nullptr) {
1149  __ b(condition, &backtrack_label_);
1150  return;
1151  }
1152  __ b(condition, to);
1153 }
1154 
1155 void RegExpMacroAssemblerS390::SafeCall(Label* to, Condition cond,
1156  CRegister cr) {
1157  Label skip;
1158  __ b(NegateCondition(cond), &skip);
1159  __ b(r14, to);
1160  __ bind(&skip);
1161 }
1162 
1163 void RegExpMacroAssemblerS390::SafeReturn() {
1164  __ pop(r14);
1165  __ mov(ip, Operand(masm_->CodeObject()));
1166  __ AddP(r14, ip);
1167  __ Ret();
1168 }
1169 
1170 void RegExpMacroAssemblerS390::SafeCallTarget(Label* name) {
1171  __ bind(name);
1172  __ CleanseP(r14);
1173  __ LoadRR(r0, r14);
1174  __ mov(ip, Operand(masm_->CodeObject()));
1175  __ SubP(r0, r0, ip);
1176  __ push(r0);
1177 }
1178 
1179 void RegExpMacroAssemblerS390::Push(Register source) {
1180  DCHECK(source != backtrack_stackpointer());
1181  __ lay(backtrack_stackpointer(),
1182  MemOperand(backtrack_stackpointer(), -kPointerSize));
1183  __ StoreP(source, MemOperand(backtrack_stackpointer()));
1184 }
1185 
1186 void RegExpMacroAssemblerS390::Pop(Register target) {
1187  DCHECK(target != backtrack_stackpointer());
1188  __ LoadP(target, MemOperand(backtrack_stackpointer()));
1189  __ la(backtrack_stackpointer(),
1190  MemOperand(backtrack_stackpointer(), kPointerSize));
1191 }
1192 
1193 void RegExpMacroAssemblerS390::CheckPreemption() {
1194  // Check for preemption.
1195  ExternalReference stack_limit =
1196  ExternalReference::address_of_stack_limit(isolate());
1197  __ mov(r2, Operand(stack_limit));
1198  __ CmpLogicalP(sp, MemOperand(r2));
1199  SafeCall(&check_preempt_label_, le);
1200 }
1201 
1202 void RegExpMacroAssemblerS390::CheckStackLimit() {
1203  ExternalReference stack_limit =
1204  ExternalReference::address_of_regexp_stack_limit(isolate());
1205  __ mov(r2, Operand(stack_limit));
1206  __ CmpLogicalP(backtrack_stackpointer(), MemOperand(r2));
1207  SafeCall(&stack_overflow_label_, le);
1208 }
1209 
1210 void RegExpMacroAssemblerS390::CallCFunctionUsingStub(
1211  ExternalReference function, int num_arguments) {
1212  // Must pass all arguments in registers. The stub pushes on the stack.
1213  DCHECK_GE(8, num_arguments);
1214  __ mov(code_pointer(), Operand(function));
1215  Label ret;
1216  __ larl(r14, &ret);
1217  __ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize));
1218  __ b(code_pointer());
1219  __ bind(&ret);
1220  if (base::OS::ActivationFrameAlignment() > kPointerSize) {
1221  __ LoadP(sp, MemOperand(sp, (kNumRequiredStackFrameSlots * kPointerSize)));
1222  } else {
1223  __ la(sp, MemOperand(sp, (kNumRequiredStackFrameSlots * kPointerSize)));
1224  }
1225  __ mov(code_pointer(), Operand(masm_->CodeObject()));
1226 }
1227 
1228 
1229 void RegExpMacroAssemblerS390::LoadCurrentCharacterUnchecked(int cp_offset,
1230  int characters) {
1231  if (mode_ == LATIN1) {
1232  // using load reverse for big-endian platforms
1233  if (characters == 4) {
1234 #if V8_TARGET_LITTLE_ENDIAN
1235  __ LoadlW(current_character(),
1236  MemOperand(current_input_offset(), end_of_input_address(),
1237  cp_offset * char_size()));
1238 #else
1239  __ LoadLogicalReversedWordP(current_character(),
1240  MemOperand(current_input_offset(), end_of_input_address(),
1241  cp_offset * char_size()));
1242 #endif
1243  } else if (characters == 2) {
1244 #if V8_TARGET_LITTLE_ENDIAN
1245  __ LoadLogicalHalfWordP(current_character(),
1246  MemOperand(current_input_offset(), end_of_input_address(),
1247  cp_offset * char_size()));
1248 #else
1249  __ LoadLogicalReversedHalfWordP(current_character(),
1250  MemOperand(current_input_offset(), end_of_input_address(),
1251  cp_offset * char_size()));
1252 #endif
1253  } else {
1254  DCHECK_EQ(1, characters);
1255  __ LoadlB(current_character(),
1256  MemOperand(current_input_offset(), end_of_input_address(),
1257  cp_offset * char_size()));
1258  }
1259  } else {
1260  DCHECK(mode_ == UC16);
1261  if (characters == 2) {
1262  __ LoadlW(current_character(),
1263  MemOperand(current_input_offset(), end_of_input_address(),
1264  cp_offset * char_size()));
1265 #if !V8_TARGET_LITTLE_ENDIAN
1266  // need to swap the order of the characters for big-endian platforms
1267  __ rll(current_character(), current_character(), Operand(16));
1268 #endif
1269  } else {
1270  DCHECK_EQ(1, characters);
1271  __ LoadLogicalHalfWordP(
1272  current_character(),
1273  MemOperand(current_input_offset(), end_of_input_address(),
1274  cp_offset * char_size()));
1275  }
1276  }
1277 }
1278 
1279 #undef __
1280 
1281 #endif // V8_INTERPRETED_REGEXP
1282 } // namespace internal
1283 } // namespace v8
1284 
1285 #endif // V8_TARGET_ARCH_S390
Definition: libplatform.h:13