V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Pages
regexp-macro-assembler-mips.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_MIPS
6 
7 #include "src/regexp/mips/regexp-macro-assembler-mips.h"
8 
9 #include "src/assembler-inl.h"
10 #include "src/code-stubs.h"
11 #include "src/log.h"
12 #include "src/macro-assembler.h"
13 #include "src/objects-inl.h"
14 #include "src/regexp/regexp-macro-assembler.h"
15 #include "src/regexp/regexp-stack.h"
16 #include "src/unicode.h"
17 
18 namespace v8 {
19 namespace internal {
20 
21 #ifndef V8_INTERPRETED_REGEXP
22 /*
23  * This assembler uses the following register assignment convention
24  * - t7 : Temporarily stores the index of capture start after a matching pass
25  * for a global regexp.
26  * - t1 : Pointer to current Code object including heap object tag.
27  * - t2 : Current position in input, as negative offset from end of string.
28  * Please notice that this is the byte offset, not the character offset!
29  * - t3 : Currently loaded character. Must be loaded using
30  * LoadCurrentCharacter before using any of the dispatch methods.
31  * - t4 : Points to tip of backtrack stack
32  * - t5 : Unused.
33  * - t6 : End of input (points to byte after last character in input).
34  * - fp : Frame pointer. Used to access arguments, local variables and
35  * RegExp registers.
36  * - sp : Points to tip of C stack.
37  *
38  * The remaining registers are free for computations.
39  * Each call to a public method should retain this convention.
40  *
41  * The stack will have the following structure:
42  *
43  * - fp[60] Isolate* isolate (address of the current isolate)
44  * - fp[56] direct_call (if 1, direct call from JavaScript code,
45  * if 0, call through the runtime system).
46  * - fp[52] stack_area_base (High end of the memory area to use as
47  * backtracking stack).
48  * - fp[48] capture array size (may fit multiple sets of matches)
49  * - fp[44] int* capture_array (int[num_saved_registers_], for output).
50  * --- sp when called ---
51  * - fp[40] return address (lr).
52  * - fp[36] old frame pointer (r11).
53  * - fp[0..32] backup of registers s0..s7.
54  * --- frame pointer ----
55  * - fp[-4] end of input (address of end of string).
56  * - fp[-8] start of input (address of first character in string).
57  * - fp[-12] start index (character index of start).
58  * - fp[-16] void* input_string (location of a handle containing the string).
59  * - fp[-20] success counter (only for global regexps to count matches).
60  * - fp[-24] Offset of location before start of input (effectively character
61  * position -1). Used to initialize capture registers to a
62  * non-position.
63  * - fp[-28] At start (if 1, we are starting at the start of the
64  * string, otherwise 0)
65  * - fp[-32] register 0 (Only positions must be stored in the first
66  * - register 1 num_saved_registers_ registers)
67  * - ...
68  * - register num_registers-1
69  * --- sp ---
70  *
71  * The first num_saved_registers_ registers are initialized to point to
72  * "character -1" in the string (i.e., char_size() bytes before the first
73  * character of the string). The remaining registers start out as garbage.
74  *
75  * The data up to the return address must be placed there by the calling
76  * code and the remaining arguments are passed in registers, e.g. by calling the
77  * code entry as cast to a function with the signature:
78  * int (*match)(String input_string,
79  * int start_index,
80  * Address start,
81  * Address end,
82  * int* capture_output_array,
83  * int num_capture_registers,
84  * byte* stack_area_base,
85  * bool direct_call = false,
86  * Isolate* isolate);
87  * The call is performed by NativeRegExpMacroAssembler::Execute()
88  * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
89  */
90 
91 #define __ ACCESS_MASM(masm_)
92 
93 RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
94  Mode mode,
95  int registers_to_save)
96  : NativeRegExpMacroAssembler(isolate, zone),
97  masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize,
98  CodeObjectRequired::kYes)),
99  mode_(mode),
100  num_registers_(registers_to_save),
101  num_saved_registers_(registers_to_save),
102  entry_label_(),
103  start_label_(),
104  success_label_(),
105  backtrack_label_(),
106  exit_label_(),
107  internal_failure_label_() {
108  DCHECK_EQ(0, registers_to_save % 2);
109  __ jmp(&entry_label_); // We'll write the entry code later.
110  // If the code gets too big or corrupted, an internal exception will be
111  // raised, and we will exit right away.
112  __ bind(&internal_failure_label_);
113  __ li(v0, Operand(FAILURE));
114  __ Ret();
115  __ bind(&start_label_); // And then continue from here.
116 }
117 
118 
119 RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
120  delete masm_;
121  // Unuse labels in case we throw away the assembler without calling GetCode.
122  entry_label_.Unuse();
123  start_label_.Unuse();
124  success_label_.Unuse();
125  backtrack_label_.Unuse();
126  exit_label_.Unuse();
127  check_preempt_label_.Unuse();
128  stack_overflow_label_.Unuse();
129  internal_failure_label_.Unuse();
130 }
131 
132 
133 int RegExpMacroAssemblerMIPS::stack_limit_slack() {
134  return RegExpStack::kStackLimitSlack;
135 }
136 
137 
138 void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
139  if (by != 0) {
140  __ Addu(current_input_offset(),
141  current_input_offset(), Operand(by * char_size()));
142  }
143 }
144 
145 
146 void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
147  DCHECK_LE(0, reg);
148  DCHECK_GT(num_registers_, reg);
149  if (by != 0) {
150  __ lw(a0, register_location(reg));
151  __ Addu(a0, a0, Operand(by));
152  __ sw(a0, register_location(reg));
153  }
154 }
155 
156 
157 void RegExpMacroAssemblerMIPS::Backtrack() {
158  CheckPreemption();
159  // Pop Code offset from backtrack stack, add Code and jump to location.
160  Pop(a0);
161  __ Addu(a0, a0, code_pointer());
162  __ Jump(a0);
163 }
164 
165 
166 void RegExpMacroAssemblerMIPS::Bind(Label* label) {
167  __ bind(label);
168 }
169 
170 
171 void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
172  BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
173 }
174 
175 
176 void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
177  BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
178 }
179 
180 
181 void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
182  __ lw(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
183  __ Addu(a0, current_input_offset(), Operand(-char_size()));
184  BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
185 }
186 
187 
188 void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
189  Label* on_not_at_start) {
190  __ lw(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
191  __ Addu(a0, current_input_offset(),
192  Operand(-char_size() + cp_offset * char_size()));
193  BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
194 }
195 
196 
197 void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
198  BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
199 }
200 
201 
202 void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
203  Label backtrack_non_equal;
204  __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
205  __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
206  __ Addu(backtrack_stackpointer(),
207  backtrack_stackpointer(),
208  Operand(kPointerSize));
209  __ bind(&backtrack_non_equal);
210  BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
211 }
212 
213 
214 void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
215  int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
216  Label fallthrough;
217  __ lw(a0, register_location(start_reg)); // Index of start of capture.
218  __ lw(a1, register_location(start_reg + 1)); // Index of end of capture.
219  __ Subu(a1, a1, a0); // Length of capture.
220 
221  // At this point, the capture registers are either both set or both cleared.
222  // If the capture length is zero, then the capture is either empty or cleared.
223  // Fall through in both cases.
224  __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
225 
226  if (read_backward) {
227  __ lw(t0, MemOperand(frame_pointer(), kStringStartMinusOne));
228  __ Addu(t0, t0, a1);
229  BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t0));
230  } else {
231  __ Addu(t5, a1, current_input_offset());
232  // Check that there are enough characters left in the input.
233  BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg));
234  }
235 
236  if (mode_ == LATIN1) {
237  Label success;
238  Label fail;
239  Label loop_check;
240 
241  // a0 - offset of start of capture.
242  // a1 - length of capture.
243  __ Addu(a0, a0, Operand(end_of_input_address()));
244  __ Addu(a2, end_of_input_address(), Operand(current_input_offset()));
245  if (read_backward) {
246  __ Subu(a2, a2, Operand(a1));
247  }
248  __ Addu(a1, a0, Operand(a1));
249 
250  // a0 - Address of start of capture.
251  // a1 - Address of end of capture.
252  // a2 - Address of current input position.
253 
254  Label loop;
255  __ bind(&loop);
256  __ lbu(a3, MemOperand(a0, 0));
257  __ addiu(a0, a0, char_size());
258  __ lbu(t0, MemOperand(a2, 0));
259  __ addiu(a2, a2, char_size());
260 
261  __ Branch(&loop_check, eq, t0, Operand(a3));
262 
263  // Mismatch, try case-insensitive match (converting letters to lower-case).
264  __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case.
265  __ Or(t0, t0, Operand(0x20)); // Also convert input character.
266  __ Branch(&fail, ne, t0, Operand(a3));
267  __ Subu(a3, a3, Operand('a'));
268  __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
269  // Latin-1: Check for values in range [224,254] but not 247.
270  __ Subu(a3, a3, Operand(224 - 'a'));
271  // Weren't Latin-1 letters.
272  __ Branch(&fail, hi, a3, Operand(254 - 224));
273  // Check for 247.
274  __ Branch(&fail, eq, a3, Operand(247 - 224));
275 
276  __ bind(&loop_check);
277  __ Branch(&loop, lt, a0, Operand(a1));
278  __ jmp(&success);
279 
280  __ bind(&fail);
281  GoTo(on_no_match);
282 
283  __ bind(&success);
284  // Compute new value of character position after the matched part.
285  __ Subu(current_input_offset(), a2, end_of_input_address());
286  if (read_backward) {
287  __ lw(t0, register_location(start_reg)); // Index of start of capture.
288  __ lw(t5, register_location(start_reg + 1)); // Index of end of capture.
289  __ Addu(current_input_offset(), current_input_offset(), Operand(t0));
290  __ Subu(current_input_offset(), current_input_offset(), Operand(t5));
291  }
292  } else {
293  DCHECK_EQ(UC16, mode_);
294  // Put regexp engine registers on stack.
295  RegList regexp_registers_to_retain = current_input_offset().bit() |
296  current_character().bit() | backtrack_stackpointer().bit();
297  __ MultiPush(regexp_registers_to_retain);
298 
299  int argument_count = 4;
300  __ PrepareCallCFunction(argument_count, a2);
301 
302  // a0 - offset of start of capture.
303  // a1 - length of capture.
304 
305  // Put arguments into arguments registers.
306  // Parameters are
307  // a0: Address byte_offset1 - Address captured substring's start.
308  // a1: Address byte_offset2 - Address of current character position.
309  // a2: size_t byte_length - length of capture in bytes(!).
310  // a3: Isolate* isolate or 0 if unicode flag.
311 
312  // Address of start of capture.
313  __ Addu(a0, a0, Operand(end_of_input_address()));
314  // Length of capture.
315  __ mov(a2, a1);
316  // Save length in callee-save register for use on return.
317  __ mov(s3, a1);
318  // Address of current input position.
319  __ Addu(a1, current_input_offset(), Operand(end_of_input_address()));
320  if (read_backward) {
321  __ Subu(a1, a1, Operand(s3));
322  }
323  // Isolate.
324 #ifdef V8_INTL_SUPPORT
325  if (unicode) {
326  __ mov(a3, zero_reg);
327  } else // NOLINT
328 #endif // V8_INTL_SUPPORT
329  {
330  __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
331  }
332 
333  {
334  AllowExternalCallThatCantCauseGC scope(masm_);
335  ExternalReference function =
336  ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
337  __ CallCFunction(function, argument_count);
338  }
339 
340  // Restore regexp engine registers.
341  __ MultiPop(regexp_registers_to_retain);
342  __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
343  __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
344 
345  // Check if function returned non-zero for success or zero for failure.
346  BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
347  // On success, advance position by length of capture.
348  if (read_backward) {
349  __ Subu(current_input_offset(), current_input_offset(), Operand(s3));
350  } else {
351  __ Addu(current_input_offset(), current_input_offset(), Operand(s3));
352  }
353  }
354 
355  __ bind(&fallthrough);
356 }
357 
358 
359 void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg,
360  bool read_backward,
361  Label* on_no_match) {
362  Label fallthrough;
363  Label success;
364 
365  // Find length of back-referenced capture.
366  __ lw(a0, register_location(start_reg));
367  __ lw(a1, register_location(start_reg + 1));
368  __ Subu(a1, a1, a0); // Length to check.
369 
370  // At this point, the capture registers are either both set or both cleared.
371  // If the capture length is zero, then the capture is either empty or cleared.
372  // Fall through in both cases.
373  __ Branch(&fallthrough, le, a1, Operand(zero_reg));
374 
375  if (read_backward) {
376  __ lw(t0, MemOperand(frame_pointer(), kStringStartMinusOne));
377  __ Addu(t0, t0, a1);
378  BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t0));
379  } else {
380  __ Addu(t5, a1, current_input_offset());
381  // Check that there are enough characters left in the input.
382  BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg));
383  }
384 
385  // a0 - offset of start of capture.
386  // a1 - length of capture.
387  __ Addu(a0, a0, Operand(end_of_input_address()));
388  __ Addu(a2, end_of_input_address(), Operand(current_input_offset()));
389  if (read_backward) {
390  __ Subu(a2, a2, Operand(a1));
391  }
392  __ Addu(a1, a0, Operand(a1));
393 
394  // a0 - Address of start of capture.
395  // a1 - Address of end of capture.
396  // a2 - Address of current input position.
397 
398 
399  Label loop;
400  __ bind(&loop);
401  if (mode_ == LATIN1) {
402  __ lbu(a3, MemOperand(a0, 0));
403  __ addiu(a0, a0, char_size());
404  __ lbu(t0, MemOperand(a2, 0));
405  __ addiu(a2, a2, char_size());
406  } else {
407  DCHECK(mode_ == UC16);
408  __ lhu(a3, MemOperand(a0, 0));
409  __ addiu(a0, a0, char_size());
410  __ lhu(t0, MemOperand(a2, 0));
411  __ addiu(a2, a2, char_size());
412  }
413  BranchOrBacktrack(on_no_match, ne, a3, Operand(t0));
414  __ Branch(&loop, lt, a0, Operand(a1));
415 
416  // Move current character position to position after match.
417  __ Subu(current_input_offset(), a2, end_of_input_address());
418  if (read_backward) {
419  __ lw(t0, register_location(start_reg)); // Index of start of capture.
420  __ lw(t5, register_location(start_reg + 1)); // Index of end of capture.
421  __ Addu(current_input_offset(), current_input_offset(), Operand(t0));
422  __ Subu(current_input_offset(), current_input_offset(), Operand(t5));
423  }
424  __ bind(&fallthrough);
425 }
426 
427 
428 void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
429  Label* on_not_equal) {
430  BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
431 }
432 
433 
434 void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
435  uint32_t mask,
436  Label* on_equal) {
437  __ And(a0, current_character(), Operand(mask));
438  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
439  BranchOrBacktrack(on_equal, eq, a0, rhs);
440 }
441 
442 
443 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
444  uint32_t mask,
445  Label* on_not_equal) {
446  __ And(a0, current_character(), Operand(mask));
447  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
448  BranchOrBacktrack(on_not_equal, ne, a0, rhs);
449 }
450 
451 
452 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
453  uc16 c,
454  uc16 minus,
455  uc16 mask,
456  Label* on_not_equal) {
457  DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
458  __ Subu(a0, current_character(), Operand(minus));
459  __ And(a0, a0, Operand(mask));
460  BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
461 }
462 
463 
464 void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
465  uc16 from,
466  uc16 to,
467  Label* on_in_range) {
468  __ Subu(a0, current_character(), Operand(from));
469  // Unsigned lower-or-same condition.
470  BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
471 }
472 
473 
474 void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
475  uc16 from,
476  uc16 to,
477  Label* on_not_in_range) {
478  __ Subu(a0, current_character(), Operand(from));
479  // Unsigned higher condition.
480  BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
481 }
482 
483 
484 void RegExpMacroAssemblerMIPS::CheckBitInTable(
485  Handle<ByteArray> table,
486  Label* on_bit_set) {
487  __ li(a0, Operand(table));
488  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
489  __ And(a1, current_character(), Operand(kTableSize - 1));
490  __ Addu(a0, a0, a1);
491  } else {
492  __ Addu(a0, a0, current_character());
493  }
494 
495  __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
496  BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
497 }
498 
499 
500 bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
501  Label* on_no_match) {
502  // Range checks (c in min..max) are generally implemented by an unsigned
503  // (c - min) <= (max - min) check.
504  switch (type) {
505  case 's':
506  // Match space-characters.
507  if (mode_ == LATIN1) {
508  // One byte space characters are '\t'..'\r', ' ' and \u00a0.
509  Label success;
510  __ Branch(&success, eq, current_character(), Operand(' '));
511  // Check range 0x09..0x0D.
512  __ Subu(a0, current_character(), Operand('\t'));
513  __ Branch(&success, ls, a0, Operand('\r' - '\t'));
514  // \u00a0 (NBSP).
515  BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00A0 - '\t'));
516  __ bind(&success);
517  return true;
518  }
519  return false;
520  case 'S':
521  // The emitted code for generic character classes is good enough.
522  return false;
523  case 'd':
524  // Match Latin1 digits ('0'..'9').
525  __ Subu(a0, current_character(), Operand('0'));
526  BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
527  return true;
528  case 'D':
529  // Match non Latin1-digits.
530  __ Subu(a0, current_character(), Operand('0'));
531  BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
532  return true;
533  case '.': {
534  // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
535  __ Xor(a0, current_character(), Operand(0x01));
536  // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
537  __ Subu(a0, a0, Operand(0x0B));
538  BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0C - 0x0B));
539  if (mode_ == UC16) {
540  // Compare original value to 0x2028 and 0x2029, using the already
541  // computed (current_char ^ 0x01 - 0x0B). I.e., check for
542  // 0x201D (0x2028 - 0x0B) or 0x201E.
543  __ Subu(a0, a0, Operand(0x2028 - 0x0B));
544  BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
545  }
546  return true;
547  }
548  case 'n': {
549  // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
550  __ Xor(a0, current_character(), Operand(0x01));
551  // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
552  __ Subu(a0, a0, Operand(0x0B));
553  if (mode_ == LATIN1) {
554  BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0C - 0x0B));
555  } else {
556  Label done;
557  BranchOrBacktrack(&done, ls, a0, Operand(0x0C - 0x0B));
558  // Compare original value to 0x2028 and 0x2029, using the already
559  // computed (current_char ^ 0x01 - 0x0B). I.e., check for
560  // 0x201D (0x2028 - 0x0B) or 0x201E.
561  __ Subu(a0, a0, Operand(0x2028 - 0x0B));
562  BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
563  __ bind(&done);
564  }
565  return true;
566  }
567  case 'w': {
568  if (mode_ != LATIN1) {
569  // Table is 256 entries, so all Latin1 characters can be tested.
570  BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
571  }
572  ExternalReference map = ExternalReference::re_word_character_map(isolate());
573  __ li(a0, Operand(map));
574  __ Addu(a0, a0, current_character());
575  __ lbu(a0, MemOperand(a0, 0));
576  BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
577  return true;
578  }
579  case 'W': {
580  Label done;
581  if (mode_ != LATIN1) {
582  // Table is 256 entries, so all Latin1 characters can be tested.
583  __ Branch(&done, hi, current_character(), Operand('z'));
584  }
585  ExternalReference map = ExternalReference::re_word_character_map(isolate());
586  __ li(a0, Operand(map));
587  __ Addu(a0, a0, current_character());
588  __ lbu(a0, MemOperand(a0, 0));
589  BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
590  if (mode_ != LATIN1) {
591  __ bind(&done);
592  }
593  return true;
594  }
595  case '*':
596  // Match any character.
597  return true;
598  // No custom implementation (yet): s(UC16), S(UC16).
599  default:
600  return false;
601  }
602 }
603 
604 
605 void RegExpMacroAssemblerMIPS::Fail() {
606  __ li(v0, Operand(FAILURE));
607  __ jmp(&exit_label_);
608 }
609 
610 
611 Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
612  Label return_v0;
613  if (masm_->has_exception()) {
614  // If the code gets corrupted due to long regular expressions and lack of
615  // space on trampolines, an internal exception flag is set. If this case
616  // is detected, we will jump into exit sequence right away.
617  __ bind_to(&entry_label_, internal_failure_label_.pos());
618  } else {
619  // Finalize code - write the entry point code now we know how many
620  // registers we need.
621 
622  // Entry code:
623  __ bind(&entry_label_);
624 
625  // Tell the system that we have a stack frame. Because the type is MANUAL,
626  // no is generated.
627  FrameScope scope(masm_, StackFrame::MANUAL);
628 
629  // Actually emit code to start a new stack frame.
630  // Push arguments
631  // Save callee-save registers.
632  // Start new stack frame.
633  // Store link register in existing stack-cell.
634  // Order here should correspond to order of offset constants in header file.
635  RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
636  s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
637  RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
638  __ MultiPush(argument_registers | registers_to_retain | ra.bit());
639  // Set frame pointer in space for it if this is not a direct call
640  // from generated code.
641  __ Addu(frame_pointer(), sp, Operand(4 * kPointerSize));
642  __ mov(a0, zero_reg);
643  __ push(a0); // Make room for success counter and initialize it to 0.
644  __ push(a0); // Make room for "string start - 1" constant.
645 
646  // Check if we have space on the stack for registers.
647  Label stack_limit_hit;
648  Label stack_ok;
649 
650  ExternalReference stack_limit =
651  ExternalReference::address_of_stack_limit(masm_->isolate());
652  __ li(a0, Operand(stack_limit));
653  __ lw(a0, MemOperand(a0));
654  __ Subu(a0, sp, a0);
655  // Handle it if the stack pointer is already below the stack limit.
656  __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
657  // Check if there is room for the variable number of registers above
658  // the stack limit.
659  __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
660  // Exit with OutOfMemory exception. There is not enough space on the stack
661  // for our working registers.
662  __ li(v0, Operand(EXCEPTION));
663  __ jmp(&return_v0);
664 
665  __ bind(&stack_limit_hit);
666  CallCheckStackGuardState(a0);
667  // If returned value is non-zero, we exit with the returned value as result.
668  __ Branch(&return_v0, ne, v0, Operand(zero_reg));
669 
670  __ bind(&stack_ok);
671  // Allocate space on stack for registers.
672  __ Subu(sp, sp, Operand(num_registers_ * kPointerSize));
673  // Load string end.
674  __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
675  // Load input start.
676  __ lw(a0, MemOperand(frame_pointer(), kInputStart));
677  // Find negative length (offset of start relative to end).
678  __ Subu(current_input_offset(), a0, end_of_input_address());
679  // Set a0 to address of char before start of the input string
680  // (effectively string position -1).
681  __ lw(a1, MemOperand(frame_pointer(), kStartIndex));
682  __ Subu(a0, current_input_offset(), Operand(char_size()));
683  __ sll(t5, a1, (mode_ == UC16) ? 1 : 0);
684  __ Subu(a0, a0, t5);
685  // Store this value in a local variable, for use when clearing
686  // position registers.
687  __ sw(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
688 
689  // Initialize code pointer register
690  __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
691 
692  Label load_char_start_regexp, start_regexp;
693  // Load newline if index is at start, previous character otherwise.
694  __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
695  __ li(current_character(), Operand('\n'));
696  __ jmp(&start_regexp);
697 
698  // Global regexp restarts matching here.
699  __ bind(&load_char_start_regexp);
700  // Load previous char as initial value of current character register.
701  LoadCurrentCharacterUnchecked(-1, 1);
702  __ bind(&start_regexp);
703 
704  // Initialize on-stack registers.
705  if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
706  // Fill saved registers with initial value = start offset - 1.
707  if (num_saved_registers_ > 8) {
708  // Address of register 0.
709  __ Addu(a1, frame_pointer(), Operand(kRegisterZero));
710  __ li(a2, Operand(num_saved_registers_));
711  Label init_loop;
712  __ bind(&init_loop);
713  __ sw(a0, MemOperand(a1));
714  __ Addu(a1, a1, Operand(-kPointerSize));
715  __ Subu(a2, a2, Operand(1));
716  __ Branch(&init_loop, ne, a2, Operand(zero_reg));
717  } else {
718  for (int i = 0; i < num_saved_registers_; i++) {
719  __ sw(a0, register_location(i));
720  }
721  }
722  }
723 
724  // Initialize backtrack stack pointer.
725  __ lw(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
726 
727  __ jmp(&start_label_);
728 
729 
730  // Exit code:
731  if (success_label_.is_linked()) {
732  // Save captures when successful.
733  __ bind(&success_label_);
734  if (num_saved_registers_ > 0) {
735  // Copy captures to output.
736  __ lw(a1, MemOperand(frame_pointer(), kInputStart));
737  __ lw(a0, MemOperand(frame_pointer(), kRegisterOutput));
738  __ lw(a2, MemOperand(frame_pointer(), kStartIndex));
739  __ Subu(a1, end_of_input_address(), a1);
740  // a1 is length of input in bytes.
741  if (mode_ == UC16) {
742  __ srl(a1, a1, 1);
743  }
744  // a1 is length of input in characters.
745  __ Addu(a1, a1, Operand(a2));
746  // a1 is length of string in characters.
747 
748  DCHECK_EQ(0, num_saved_registers_ % 2);
749  // Always an even number of capture registers. This allows us to
750  // unroll the loop once to add an operation between a load of a register
751  // and the following use of that register.
752  for (int i = 0; i < num_saved_registers_; i += 2) {
753  __ lw(a2, register_location(i));
754  __ lw(a3, register_location(i + 1));
755  if (i == 0 && global_with_zero_length_check()) {
756  // Keep capture start in a4 for the zero-length check later.
757  __ mov(t7, a2);
758  }
759  if (mode_ == UC16) {
760  __ sra(a2, a2, 1);
761  __ Addu(a2, a2, a1);
762  __ sra(a3, a3, 1);
763  __ Addu(a3, a3, a1);
764  } else {
765  __ Addu(a2, a1, Operand(a2));
766  __ Addu(a3, a1, Operand(a3));
767  }
768  __ sw(a2, MemOperand(a0));
769  __ Addu(a0, a0, kPointerSize);
770  __ sw(a3, MemOperand(a0));
771  __ Addu(a0, a0, kPointerSize);
772  }
773  }
774 
775  if (global()) {
776  // Restart matching if the regular expression is flagged as global.
777  __ lw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
778  __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
779  __ lw(a2, MemOperand(frame_pointer(), kRegisterOutput));
780  // Increment success counter.
781  __ Addu(a0, a0, 1);
782  __ sw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
783  // Capture results have been stored, so the number of remaining global
784  // output registers is reduced by the number of stored captures.
785  __ Subu(a1, a1, num_saved_registers_);
786  // Check whether we have enough room for another set of capture results.
787  __ mov(v0, a0);
788  __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
789 
790  __ sw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
791  // Advance the location for output.
792  __ Addu(a2, a2, num_saved_registers_ * kPointerSize);
793  __ sw(a2, MemOperand(frame_pointer(), kRegisterOutput));
794 
795  // Prepare a0 to initialize registers with its value in the next run.
796  __ lw(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
797 
798  if (global_with_zero_length_check()) {
799  // Special case for zero-length matches.
800  // t7: capture start index
801  // Not a zero-length match, restart.
802  __ Branch(
803  &load_char_start_regexp, ne, current_input_offset(), Operand(t7));
804  // Offset from the end is zero if we already reached the end.
805  __ Branch(&exit_label_, eq, current_input_offset(),
806  Operand(zero_reg));
807  // Advance current position after a zero-length match.
808  Label advance;
809  __ bind(&advance);
810  __ Addu(current_input_offset(),
811  current_input_offset(),
812  Operand((mode_ == UC16) ? 2 : 1));
813  if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
814  }
815 
816  __ Branch(&load_char_start_regexp);
817  } else {
818  __ li(v0, Operand(SUCCESS));
819  }
820  }
821  // Exit and return v0.
822  __ bind(&exit_label_);
823  if (global()) {
824  __ lw(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
825  }
826 
827  __ bind(&return_v0);
828  // Skip sp past regexp registers and local variables..
829  __ mov(sp, frame_pointer());
830  // Restore registers s0..s7 and return (restoring ra to pc).
831  __ MultiPop(registers_to_retain | ra.bit());
832  __ Ret();
833 
834  // Backtrack code (branch target for conditional backtracks).
835  if (backtrack_label_.is_linked()) {
836  __ bind(&backtrack_label_);
837  Backtrack();
838  }
839 
840  Label exit_with_exception;
841 
842  // Preempt-code.
843  if (check_preempt_label_.is_linked()) {
844  SafeCallTarget(&check_preempt_label_);
845  // Put regexp engine registers on stack.
846  RegList regexp_registers_to_retain = current_input_offset().bit() |
847  current_character().bit() | backtrack_stackpointer().bit();
848  __ MultiPush(regexp_registers_to_retain);
849  CallCheckStackGuardState(a0);
850  __ MultiPop(regexp_registers_to_retain);
851  // If returning non-zero, we should end execution with the given
852  // result as return value.
853  __ Branch(&return_v0, ne, v0, Operand(zero_reg));
854 
855  // String might have moved: Reload end of string from frame.
856  __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
857  __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
858  SafeReturn();
859  }
860 
861  // Backtrack stack overflow code.
862  if (stack_overflow_label_.is_linked()) {
863  SafeCallTarget(&stack_overflow_label_);
864  // Reached if the backtrack-stack limit has been hit.
865  // Put regexp engine registers on stack first.
866  RegList regexp_registers = current_input_offset().bit() |
867  current_character().bit();
868  __ MultiPush(regexp_registers);
869  Label grow_failed;
870  // Call GrowStack(backtrack_stackpointer(), &stack_base)
871  static const int num_arguments = 3;
872  __ PrepareCallCFunction(num_arguments, a0);
873  __ mov(a0, backtrack_stackpointer());
874  __ Addu(a1, frame_pointer(), Operand(kStackHighEnd));
875  __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
876  ExternalReference grow_stack =
877  ExternalReference::re_grow_stack(masm_->isolate());
878  __ CallCFunction(grow_stack, num_arguments);
879  // Restore regexp registers.
880  __ MultiPop(regexp_registers);
881  // If return nullptr, we have failed to grow the stack, and
882  // must exit with a stack-overflow exception.
883  __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
884  // Otherwise use return value as new stack pointer.
885  __ mov(backtrack_stackpointer(), v0);
886  // Restore saved registers and continue.
887  __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
888  __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
889  SafeReturn();
890  }
891 
892  if (exit_with_exception.is_linked()) {
893  // If any of the code above needed to exit with an exception.
894  __ bind(&exit_with_exception);
895  // Exit with Result EXCEPTION(-1) to signal thrown exception.
896  __ li(v0, Operand(EXCEPTION));
897  __ jmp(&return_v0);
898  }
899  }
900 
901  CodeDesc code_desc;
902  masm_->GetCode(isolate(), &code_desc);
903  Handle<Code> code = isolate()->factory()->NewCode(code_desc, Code::REGEXP,
904  masm_->CodeObject());
905  LOG(masm_->isolate(),
906  RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
907  return Handle<HeapObject>::cast(code);
908 }
909 
910 
911 void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
912  if (to == nullptr) {
913  Backtrack();
914  return;
915  }
916  __ jmp(to);
917  return;
918 }
919 
920 
921 void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
922  int comparand,
923  Label* if_ge) {
924  __ lw(a0, register_location(reg));
925  BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
926 }
927 
928 
929 void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
930  int comparand,
931  Label* if_lt) {
932  __ lw(a0, register_location(reg));
933  BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
934 }
935 
936 
937 void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
938  Label* if_eq) {
939  __ lw(a0, register_location(reg));
940  BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
941 }
942 
943 
944 RegExpMacroAssembler::IrregexpImplementation
945  RegExpMacroAssemblerMIPS::Implementation() {
946  return kMIPSImplementation;
947 }
948 
949 
950 void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
951  Label* on_end_of_input,
952  bool check_bounds,
953  int characters) {
954  DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works).
955  if (check_bounds) {
956  if (cp_offset >= 0) {
957  CheckPosition(cp_offset + characters - 1, on_end_of_input);
958  } else {
959  CheckPosition(cp_offset, on_end_of_input);
960  }
961  }
962  LoadCurrentCharacterUnchecked(cp_offset, characters);
963 }
964 
965 
966 void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
967  Pop(current_input_offset());
968 }
969 
970 
971 void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
972  Pop(a0);
973  __ sw(a0, register_location(register_index));
974 }
975 
976 
977 void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
978  if (label->is_bound()) {
979  int target = label->pos();
980  __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
981  } else {
982  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
983  Label after_constant;
984  __ Branch(&after_constant);
985  int offset = masm_->pc_offset();
986  int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
987  __ emit(0);
988  masm_->label_at_put(label, offset);
989  __ bind(&after_constant);
990  if (is_int16(cp_offset)) {
991  __ lw(a0, MemOperand(code_pointer(), cp_offset));
992  } else {
993  __ Addu(a0, code_pointer(), cp_offset);
994  __ lw(a0, MemOperand(a0, 0));
995  }
996  }
997  Push(a0);
998  CheckStackLimit();
999 }
1000 
1001 
1002 void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
1003  Push(current_input_offset());
1004 }
1005 
1006 
1007 void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
1008  StackCheckFlag check_stack_limit) {
1009  __ lw(a0, register_location(register_index));
1010  Push(a0);
1011  if (check_stack_limit) CheckStackLimit();
1012 }
1013 
1014 
1015 void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
1016  __ lw(current_input_offset(), register_location(reg));
1017 }
1018 
1019 
1020 void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
1021  __ lw(backtrack_stackpointer(), register_location(reg));
1022  __ lw(a0, MemOperand(frame_pointer(), kStackHighEnd));
1023  __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
1024 }
1025 
1026 
1027 void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
1028  Label after_position;
1029  __ Branch(&after_position,
1030  ge,
1031  current_input_offset(),
1032  Operand(-by * char_size()));
1033  __ li(current_input_offset(), -by * char_size());
1034  // On RegExp code entry (where this operation is used), the character before
1035  // the current position is expected to be already loaded.
1036  // We have advanced the position, so it's safe to read backwards.
1037  LoadCurrentCharacterUnchecked(-1, 1);
1038  __ bind(&after_position);
1039 }
1040 
1041 
1042 void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
1043  DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
1044  __ li(a0, Operand(to));
1045  __ sw(a0, register_location(register_index));
1046 }
1047 
1048 
1049 bool RegExpMacroAssemblerMIPS::Succeed() {
1050  __ jmp(&success_label_);
1051  return global();
1052 }
1053 
1054 
1055 void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
1056  int cp_offset) {
1057  if (cp_offset == 0) {
1058  __ sw(current_input_offset(), register_location(reg));
1059  } else {
1060  __ Addu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1061  __ sw(a0, register_location(reg));
1062  }
1063 }
1064 
1065 
1066 void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
1067  DCHECK(reg_from <= reg_to);
1068  __ lw(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
1069  for (int reg = reg_from; reg <= reg_to; reg++) {
1070  __ sw(a0, register_location(reg));
1071  }
1072 }
1073 
1074 
1075 void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
1076  __ lw(a1, MemOperand(frame_pointer(), kStackHighEnd));
1077  __ Subu(a0, backtrack_stackpointer(), a1);
1078  __ sw(a0, register_location(reg));
1079 }
1080 
1081 
1082 bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
1083  return false;
1084 }
1085 
1086 
1087 // Private methods:
1088 
1089 void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
1090  int stack_alignment = base::OS::ActivationFrameAlignment();
1091 
1092  // Align the stack pointer and save the original sp value on the stack.
1093  __ mov(scratch, sp);
1094  __ Subu(sp, sp, Operand(kPointerSize));
1095  DCHECK(base::bits::IsPowerOfTwo(stack_alignment));
1096  __ And(sp, sp, Operand(-stack_alignment));
1097  __ sw(scratch, MemOperand(sp));
1098 
1099  __ mov(a2, frame_pointer());
1100  // Code of self.
1101  __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
1102 
1103  // We need to make room for the return address on the stack.
1104  DCHECK(IsAligned(stack_alignment, kPointerSize));
1105  __ Subu(sp, sp, Operand(stack_alignment));
1106 
1107  // Stack pointer now points to cell where return address is to be written.
1108  // Arguments are in registers, meaning we teat the return address as
1109  // argument 5. Since DirectCEntryStub will handleallocating space for the C
1110  // argument slots, we don't need to care about that here. This is how the
1111  // stack will look (sp meaning the value of sp at this moment):
1112  // [sp + 3] - empty slot if needed for alignment.
1113  // [sp + 2] - saved sp.
1114  // [sp + 1] - second word reserved for return value.
1115  // [sp + 0] - first word reserved for return value.
1116 
1117  // a0 will point to the return address, placed by DirectCEntry.
1118  __ mov(a0, sp);
1119 
1120  ExternalReference stack_guard_check =
1121  ExternalReference::re_check_stack_guard_state(masm_->isolate());
1122  __ li(t9, Operand(stack_guard_check));
1123  DirectCEntryStub stub(isolate());
1124  stub.GenerateCall(masm_, t9);
1125 
1126  // DirectCEntryStub allocated space for the C argument slots so we have to
1127  // drop them with the return address from the stack with loading saved sp.
1128  // At this point stack must look:
1129  // [sp + 7] - empty slot if needed for alignment.
1130  // [sp + 6] - saved sp.
1131  // [sp + 5] - second word reserved for return value.
1132  // [sp + 4] - first word reserved for return value.
1133  // [sp + 3] - C argument slot.
1134  // [sp + 2] - C argument slot.
1135  // [sp + 1] - C argument slot.
1136  // [sp + 0] - C argument slot.
1137  __ lw(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
1138 
1139  __ li(code_pointer(), Operand(masm_->CodeObject()));
1140 }
1141 
1142 
1143 // Helper function for reading a value out of a stack frame.
1144 template <typename T>
1145 static T& frame_entry(Address re_frame, int frame_offset) {
1146  return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
1147 }
1148 
1149 
1150 template <typename T>
1151 static T* frame_entry_address(Address re_frame, int frame_offset) {
1152  return reinterpret_cast<T*>(re_frame + frame_offset);
1153 }
1154 
1155 int RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
1156  Address raw_code,
1157  Address re_frame) {
1158  Code re_code = Code::cast(ObjectPtr(raw_code));
1159  return NativeRegExpMacroAssembler::CheckStackGuardState(
1160  frame_entry<Isolate*>(re_frame, kIsolate),
1161  frame_entry<int>(re_frame, kStartIndex),
1162  frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
1163  frame_entry_address<Address>(re_frame, kInputString),
1164  frame_entry_address<const byte*>(re_frame, kInputStart),
1165  frame_entry_address<const byte*>(re_frame, kInputEnd));
1166 }
1167 
1168 
1169 MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
1170  DCHECK(register_index < (1<<30));
1171  if (num_registers_ <= register_index) {
1172  num_registers_ = register_index + 1;
1173  }
1174  return MemOperand(frame_pointer(),
1175  kRegisterZero - register_index * kPointerSize);
1176 }
1177 
1178 
1179 void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
1180  Label* on_outside_input) {
1181  if (cp_offset >= 0) {
1182  BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
1183  Operand(-cp_offset * char_size()));
1184  } else {
1185  __ lw(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
1186  __ Addu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1187  BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
1188  }
1189 }
1190 
1191 
1192 void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
1193  Condition condition,
1194  Register rs,
1195  const Operand& rt) {
1196  if (condition == al) { // Unconditional.
1197  if (to == nullptr) {
1198  Backtrack();
1199  return;
1200  }
1201  __ jmp(to);
1202  return;
1203  }
1204  if (to == nullptr) {
1205  __ Branch(&backtrack_label_, condition, rs, rt);
1206  return;
1207  }
1208  __ Branch(to, condition, rs, rt);
1209 }
1210 
1211 
1212 void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
1213  Condition cond,
1214  Register rs,
1215  const Operand& rt) {
1216  __ BranchAndLink(to, cond, rs, rt);
1217 }
1218 
1219 
1220 void RegExpMacroAssemblerMIPS::SafeReturn() {
1221  __ pop(ra);
1222  __ Addu(t5, ra, Operand(masm_->CodeObject()));
1223  __ Jump(t5);
1224 }
1225 
1226 
1227 void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
1228  __ bind(name);
1229  __ Subu(ra, ra, Operand(masm_->CodeObject()));
1230  __ push(ra);
1231 }
1232 
1233 
1234 void RegExpMacroAssemblerMIPS::Push(Register source) {
1235  DCHECK(source != backtrack_stackpointer());
1236  __ Addu(backtrack_stackpointer(),
1237  backtrack_stackpointer(),
1238  Operand(-kPointerSize));
1239  __ sw(source, MemOperand(backtrack_stackpointer()));
1240 }
1241 
1242 
1243 void RegExpMacroAssemblerMIPS::Pop(Register target) {
1244  DCHECK(target != backtrack_stackpointer());
1245  __ lw(target, MemOperand(backtrack_stackpointer()));
1246  __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), kPointerSize);
1247 }
1248 
1249 
1250 void RegExpMacroAssemblerMIPS::CheckPreemption() {
1251  // Check for preemption.
1252  ExternalReference stack_limit =
1253  ExternalReference::address_of_stack_limit(masm_->isolate());
1254  __ li(a0, Operand(stack_limit));
1255  __ lw(a0, MemOperand(a0));
1256  SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
1257 }
1258 
1259 
1260 void RegExpMacroAssemblerMIPS::CheckStackLimit() {
1261  ExternalReference stack_limit =
1262  ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
1263 
1264  __ li(a0, Operand(stack_limit));
1265  __ lw(a0, MemOperand(a0));
1266  SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
1267 }
1268 
1269 
1270 void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
1271  int characters) {
1272  Register offset = current_input_offset();
1273  if (cp_offset != 0) {
1274  // t7 is not being used to store the capture start index at this point.
1275  __ Addu(t7, current_input_offset(), Operand(cp_offset * char_size()));
1276  offset = t7;
1277  }
1278  // We assume that we cannot do unaligned loads on MIPS, so this function
1279  // must only be used to load a single character at a time.
1280  DCHECK_EQ(1, characters);
1281  __ Addu(t5, end_of_input_address(), Operand(offset));
1282  if (mode_ == LATIN1) {
1283  __ lbu(current_character(), MemOperand(t5, 0));
1284  } else {
1285  DCHECK_EQ(UC16, mode_);
1286  __ lhu(current_character(), MemOperand(t5, 0));
1287  }
1288 }
1289 
1290 
1291 #undef __
1292 
1293 #endif // V8_INTERPRETED_REGEXP
1294 
1295 } // namespace internal
1296 } // namespace v8
1297 
1298 #endif // V8_TARGET_ARCH_MIPS
Definition: libplatform.h:13