V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
regexp-macro-assembler-mips64.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_MIPS64
6 
7 #include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
8 
9 #include "src/assembler-inl.h"
10 #include "src/code-stubs.h"
11 #include "src/log.h"
12 #include "src/macro-assembler.h"
13 #include "src/objects-inl.h"
14 #include "src/regexp/regexp-macro-assembler.h"
15 #include "src/regexp/regexp-stack.h"
16 #include "src/unicode.h"
17 
18 namespace v8 {
19 namespace internal {
20 
21 #ifndef V8_INTERPRETED_REGEXP
22 
23 /* clang-format off
24  *
25  * This assembler uses the following register assignment convention
26  * - t3 : Temporarily stores the index of capture start after a matching pass
27  * for a global regexp.
28  * - a5 : Pointer to current Code object including heap object tag.
29  * - a6 : Current position in input, as negative offset from end of string.
30  * Please notice that this is the byte offset, not the character offset!
31  * - a7 : Currently loaded character. Must be loaded using
32  * LoadCurrentCharacter before using any of the dispatch methods.
33  * - t0 : Points to tip of backtrack stack
34  * - t1 : Unused.
35  * - t2 : End of input (points to byte after last character in input).
36  * - fp : Frame pointer. Used to access arguments, local variables and
37  * RegExp registers.
38  * - sp : Points to tip of C stack.
39  *
40  * The remaining registers are free for computations.
41  * Each call to a public method should retain this convention.
42  *
43  * TODO(plind): O32 documented here with intent of having single 32/64 codebase
44  * in the future.
45  *
46  * The O32 stack will have the following structure:
47  *
48  * - fp[72] Isolate* isolate (address of the current isolate)
49  * - fp[68] direct_call (if 1, direct call from JavaScript code,
50  * if 0, call through the runtime system).
51  * - fp[64] stack_area_base (High end of the memory area to use as
52  * backtracking stack).
53  * - fp[60] capture array size (may fit multiple sets of matches)
54  * - fp[44..59] MIPS O32 four argument slots
55  * - fp[40] int* capture_array (int[num_saved_registers_], for output).
56  * --- sp when called ---
57  * - fp[36] return address (lr).
58  * - fp[32] old frame pointer (r11).
59  * - fp[0..31] backup of registers s0..s7.
60  * --- frame pointer ----
61  * - fp[-4] end of input (address of end of string).
62  * - fp[-8] start of input (address of first character in string).
63  * - fp[-12] start index (character index of start).
64  * - fp[-16] void* input_string (location of a handle containing the string).
65  * - fp[-20] success counter (only for global regexps to count matches).
66  * - fp[-24] Offset of location before start of input (effectively character
67  * string start - 1). Used to initialize capture registers to a
68  * non-position.
69  * - fp[-28] At start (if 1, we are starting at the start of the
70  * string, otherwise 0)
71  * - fp[-32] register 0 (Only positions must be stored in the first
72  * - register 1 num_saved_registers_ registers)
73  * - ...
74  * - register num_registers-1
75  * --- sp ---
76  *
77  *
78  * The N64 stack will have the following structure:
79  *
80  * - fp[80] Isolate* isolate (address of the current isolate) kIsolate
81  * kStackFrameHeader
82  * --- sp when called ---
83  * - fp[72] ra Return from RegExp code (ra). kReturnAddress
84  * - fp[64] s9, old-fp Old fp, callee saved(s9).
85  * - fp[0..63] s0..s7 Callee-saved registers s0..s7.
86  * --- frame pointer ----
87  * - fp[-8] direct_call (1 = direct call from JS, 0 = from runtime) kDirectCall
88  * - fp[-16] stack_base (Top of backtracking stack). kStackHighEnd
89  * - fp[-24] capture array size (may fit multiple sets of matches) kNumOutputRegisters
90  * - fp[-32] int* capture_array (int[num_saved_registers_], for output). kRegisterOutput
91  * - fp[-40] end of input (address of end of string). kInputEnd
92  * - fp[-48] start of input (address of first character in string). kInputStart
93  * - fp[-56] start index (character index of start). kStartIndex
94  * - fp[-64] void* input_string (location of a handle containing the string). kInputString
95  * - fp[-72] success counter (only for global regexps to count matches). kSuccessfulCaptures
96  * - fp[-80] Offset of location before start of input (effectively character kStringStartMinusOne
97  * position -1). Used to initialize capture registers to a
98  * non-position.
99  * --------- The following output registers are 32-bit values. ---------
100  * - fp[-88] register 0 (Only positions must be stored in the first kRegisterZero
101  * - register 1 num_saved_registers_ registers)
102  * - ...
103  * - register num_registers-1
104  * --- sp ---
105  *
106  * The first num_saved_registers_ registers are initialized to point to
107  * "character -1" in the string (i.e., char_size() bytes before the first
108  * character of the string). The remaining registers start out as garbage.
109  *
110  * The data up to the return address must be placed there by the calling
111  * code and the remaining arguments are passed in registers, e.g. by calling the
112  * code entry as cast to a function with the signature:
113  * int (*match)(String input_string,
114  * int start_index,
115  * Address start,
116  * Address end,
117  * int* capture_output_array,
118  * int num_capture_registers,
119  * byte* stack_area_base,
120  * bool direct_call = false,
121  * Isolate* isolate);
122  * The call is performed by NativeRegExpMacroAssembler::Execute()
123  * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
124  *
125  * clang-format on
126  */
127 
128 #define __ ACCESS_MASM(masm_)
129 
130 RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
131  Mode mode,
132  int registers_to_save)
133  : NativeRegExpMacroAssembler(isolate, zone),
134  masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize,
135  CodeObjectRequired::kYes)),
136  mode_(mode),
137  num_registers_(registers_to_save),
138  num_saved_registers_(registers_to_save),
139  entry_label_(),
140  start_label_(),
141  success_label_(),
142  backtrack_label_(),
143  exit_label_(),
144  internal_failure_label_() {
145  DCHECK_EQ(0, registers_to_save % 2);
146  __ jmp(&entry_label_); // We'll write the entry code later.
147  // If the code gets too big or corrupted, an internal exception will be
148  // raised, and we will exit right away.
149  __ bind(&internal_failure_label_);
150  __ li(v0, Operand(FAILURE));
151  __ Ret();
152  __ bind(&start_label_); // And then continue from here.
153 }
154 
155 
156 RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
157  delete masm_;
158  // Unuse labels in case we throw away the assembler without calling GetCode.
159  entry_label_.Unuse();
160  start_label_.Unuse();
161  success_label_.Unuse();
162  backtrack_label_.Unuse();
163  exit_label_.Unuse();
164  check_preempt_label_.Unuse();
165  stack_overflow_label_.Unuse();
166  internal_failure_label_.Unuse();
167 }
168 
169 
170 int RegExpMacroAssemblerMIPS::stack_limit_slack() {
171  return RegExpStack::kStackLimitSlack;
172 }
173 
174 
175 void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
176  if (by != 0) {
177  __ Daddu(current_input_offset(),
178  current_input_offset(), Operand(by * char_size()));
179  }
180 }
181 
182 
183 void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
184  DCHECK_LE(0, reg);
185  DCHECK_GT(num_registers_, reg);
186  if (by != 0) {
187  __ Ld(a0, register_location(reg));
188  __ Daddu(a0, a0, Operand(by));
189  __ Sd(a0, register_location(reg));
190  }
191 }
192 
193 
194 void RegExpMacroAssemblerMIPS::Backtrack() {
195  CheckPreemption();
196  // Pop Code offset from backtrack stack, add Code and jump to location.
197  Pop(a0);
198  __ Daddu(a0, a0, code_pointer());
199  __ Jump(a0);
200 }
201 
202 
203 void RegExpMacroAssemblerMIPS::Bind(Label* label) {
204  __ bind(label);
205 }
206 
207 
208 void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
209  BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
210 }
211 
212 
213 void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
214  BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
215 }
216 
217 
218 void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
219  __ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
220  __ Daddu(a0, current_input_offset(), Operand(-char_size()));
221  BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
222 }
223 
224 
225 void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
226  Label* on_not_at_start) {
227  __ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
228  __ Daddu(a0, current_input_offset(),
229  Operand(-char_size() + cp_offset * char_size()));
230  BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
231 }
232 
233 
234 void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
235  BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
236 }
237 
238 
239 void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
240  Label backtrack_non_equal;
241  __ Lw(a0, MemOperand(backtrack_stackpointer(), 0));
242  __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
243  __ Daddu(backtrack_stackpointer(),
244  backtrack_stackpointer(),
245  Operand(kIntSize));
246  __ bind(&backtrack_non_equal);
247  BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
248 }
249 
250 
251 void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
252  int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
253  Label fallthrough;
254  __ Ld(a0, register_location(start_reg)); // Index of start of capture.
255  __ Ld(a1, register_location(start_reg + 1)); // Index of end of capture.
256  __ Dsubu(a1, a1, a0); // Length of capture.
257 
258  // At this point, the capture registers are either both set or both cleared.
259  // If the capture length is zero, then the capture is either empty or cleared.
260  // Fall through in both cases.
261  __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
262 
263  if (read_backward) {
264  __ Ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
265  __ Daddu(t1, t1, a1);
266  BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
267  } else {
268  __ Daddu(t1, a1, current_input_offset());
269  // Check that there are enough characters left in the input.
270  BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
271  }
272 
273  if (mode_ == LATIN1) {
274  Label success;
275  Label fail;
276  Label loop_check;
277 
278  // a0 - offset of start of capture.
279  // a1 - length of capture.
280  __ Daddu(a0, a0, Operand(end_of_input_address()));
281  __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
282  if (read_backward) {
283  __ Dsubu(a2, a2, Operand(a1));
284  }
285  __ Daddu(a1, a0, Operand(a1));
286 
287  // a0 - Address of start of capture.
288  // a1 - Address of end of capture.
289  // a2 - Address of current input position.
290 
291  Label loop;
292  __ bind(&loop);
293  __ Lbu(a3, MemOperand(a0, 0));
294  __ daddiu(a0, a0, char_size());
295  __ Lbu(a4, MemOperand(a2, 0));
296  __ daddiu(a2, a2, char_size());
297 
298  __ Branch(&loop_check, eq, a4, Operand(a3));
299 
300  // Mismatch, try case-insensitive match (converting letters to lower-case).
301  __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case.
302  __ Or(a4, a4, Operand(0x20)); // Also convert input character.
303  __ Branch(&fail, ne, a4, Operand(a3));
304  __ Dsubu(a3, a3, Operand('a'));
305  __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
306  // Latin-1: Check for values in range [224,254] but not 247.
307  __ Dsubu(a3, a3, Operand(224 - 'a'));
308  // Weren't Latin-1 letters.
309  __ Branch(&fail, hi, a3, Operand(254 - 224));
310  // Check for 247.
311  __ Branch(&fail, eq, a3, Operand(247 - 224));
312 
313  __ bind(&loop_check);
314  __ Branch(&loop, lt, a0, Operand(a1));
315  __ jmp(&success);
316 
317  __ bind(&fail);
318  GoTo(on_no_match);
319 
320  __ bind(&success);
321  // Compute new value of character position after the matched part.
322  __ Dsubu(current_input_offset(), a2, end_of_input_address());
323  if (read_backward) {
324  __ Ld(t1, register_location(start_reg)); // Index of start of capture.
325  __ Ld(a2, register_location(start_reg + 1)); // Index of end of capture.
326  __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
327  __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
328  }
329  } else {
330  DCHECK(mode_ == UC16);
331  // Put regexp engine registers on stack.
332  RegList regexp_registers_to_retain = current_input_offset().bit() |
333  current_character().bit() | backtrack_stackpointer().bit();
334  __ MultiPush(regexp_registers_to_retain);
335 
336  int argument_count = 4;
337  __ PrepareCallCFunction(argument_count, a2);
338 
339  // a0 - offset of start of capture.
340  // a1 - length of capture.
341 
342  // Put arguments into arguments registers.
343  // Parameters are
344  // a0: Address byte_offset1 - Address captured substring's start.
345  // a1: Address byte_offset2 - Address of current character position.
346  // a2: size_t byte_length - length of capture in bytes(!).
347  // a3: Isolate* isolate or 0 if unicode flag.
348 
349  // Address of start of capture.
350  __ Daddu(a0, a0, Operand(end_of_input_address()));
351  // Length of capture.
352  __ mov(a2, a1);
353  // Save length in callee-save register for use on return.
354  __ mov(s3, a1);
355  // Address of current input position.
356  __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
357  if (read_backward) {
358  __ Dsubu(a1, a1, Operand(s3));
359  }
360  // Isolate.
361 #ifdef V8_INTL_SUPPORT
362  if (unicode) {
363  __ mov(a3, zero_reg);
364  } else // NOLINT
365 #endif // V8_INTL_SUPPORT
366  {
367  __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
368  }
369 
370  {
371  AllowExternalCallThatCantCauseGC scope(masm_);
372  ExternalReference function =
373  ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
374  __ CallCFunction(function, argument_count);
375  }
376 
377  // Restore regexp engine registers.
378  __ MultiPop(regexp_registers_to_retain);
379  __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
380  __ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
381 
382  // Check if function returned non-zero for success or zero for failure.
383  BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
384  // On success, increment position by length of capture.
385  if (read_backward) {
386  __ Dsubu(current_input_offset(), current_input_offset(), Operand(s3));
387  } else {
388  __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
389  }
390  }
391 
392  __ bind(&fallthrough);
393 }
394 
395 
396 void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg,
397  bool read_backward,
398  Label* on_no_match) {
399  Label fallthrough;
400  Label success;
401 
402  // Find length of back-referenced capture.
403  __ Ld(a0, register_location(start_reg));
404  __ Ld(a1, register_location(start_reg + 1));
405  __ Dsubu(a1, a1, a0); // Length to check.
406 
407  // At this point, the capture registers are either both set or both cleared.
408  // If the capture length is zero, then the capture is either empty or cleared.
409  // Fall through in both cases.
410  __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
411 
412  if (read_backward) {
413  __ Ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
414  __ Daddu(t1, t1, a1);
415  BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
416  } else {
417  __ Daddu(t1, a1, current_input_offset());
418  // Check that there are enough characters left in the input.
419  BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
420  }
421 
422  // Compute pointers to match string and capture string.
423  __ Daddu(a0, a0, Operand(end_of_input_address()));
424  __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
425  if (read_backward) {
426  __ Dsubu(a2, a2, Operand(a1));
427  }
428  __ Daddu(a1, a1, Operand(a0));
429 
430  Label loop;
431  __ bind(&loop);
432  if (mode_ == LATIN1) {
433  __ Lbu(a3, MemOperand(a0, 0));
434  __ daddiu(a0, a0, char_size());
435  __ Lbu(a4, MemOperand(a2, 0));
436  __ daddiu(a2, a2, char_size());
437  } else {
438  DCHECK(mode_ == UC16);
439  __ Lhu(a3, MemOperand(a0, 0));
440  __ daddiu(a0, a0, char_size());
441  __ Lhu(a4, MemOperand(a2, 0));
442  __ daddiu(a2, a2, char_size());
443  }
444  BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
445  __ Branch(&loop, lt, a0, Operand(a1));
446 
447  // Move current character position to position after match.
448  __ Dsubu(current_input_offset(), a2, end_of_input_address());
449  if (read_backward) {
450  __ Ld(t1, register_location(start_reg)); // Index of start of capture.
451  __ Ld(a2, register_location(start_reg + 1)); // Index of end of capture.
452  __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
453  __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
454  }
455  __ bind(&fallthrough);
456 }
457 
458 
459 void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
460  Label* on_not_equal) {
461  BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
462 }
463 
464 
465 void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
466  uint32_t mask,
467  Label* on_equal) {
468  __ And(a0, current_character(), Operand(mask));
469  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
470  BranchOrBacktrack(on_equal, eq, a0, rhs);
471 }
472 
473 
474 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
475  uint32_t mask,
476  Label* on_not_equal) {
477  __ And(a0, current_character(), Operand(mask));
478  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
479  BranchOrBacktrack(on_not_equal, ne, a0, rhs);
480 }
481 
482 
483 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
484  uc16 c,
485  uc16 minus,
486  uc16 mask,
487  Label* on_not_equal) {
488  DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
489  __ Dsubu(a0, current_character(), Operand(minus));
490  __ And(a0, a0, Operand(mask));
491  BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
492 }
493 
494 
495 void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
496  uc16 from,
497  uc16 to,
498  Label* on_in_range) {
499  __ Dsubu(a0, current_character(), Operand(from));
500  // Unsigned lower-or-same condition.
501  BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
502 }
503 
504 
505 void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
506  uc16 from,
507  uc16 to,
508  Label* on_not_in_range) {
509  __ Dsubu(a0, current_character(), Operand(from));
510  // Unsigned higher condition.
511  BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
512 }
513 
514 
515 void RegExpMacroAssemblerMIPS::CheckBitInTable(
516  Handle<ByteArray> table,
517  Label* on_bit_set) {
518  __ li(a0, Operand(table));
519  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
520  __ And(a1, current_character(), Operand(kTableSize - 1));
521  __ Daddu(a0, a0, a1);
522  } else {
523  __ Daddu(a0, a0, current_character());
524  }
525 
526  __ Lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
527  BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
528 }
529 
530 
531 bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
532  Label* on_no_match) {
533  // Range checks (c in min..max) are generally implemented by an unsigned
534  // (c - min) <= (max - min) check.
535  switch (type) {
536  case 's':
537  // Match space-characters.
538  if (mode_ == LATIN1) {
539  // One byte space characters are '\t'..'\r', ' ' and \u00a0.
540  Label success;
541  __ Branch(&success, eq, current_character(), Operand(' '));
542  // Check range 0x09..0x0D.
543  __ Dsubu(a0, current_character(), Operand('\t'));
544  __ Branch(&success, ls, a0, Operand('\r' - '\t'));
545  // \u00a0 (NBSP).
546  BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00A0 - '\t'));
547  __ bind(&success);
548  return true;
549  }
550  return false;
551  case 'S':
552  // The emitted code for generic character classes is good enough.
553  return false;
554  case 'd':
555  // Match Latin1 digits ('0'..'9').
556  __ Dsubu(a0, current_character(), Operand('0'));
557  BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
558  return true;
559  case 'D':
560  // Match non Latin1-digits.
561  __ Dsubu(a0, current_character(), Operand('0'));
562  BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
563  return true;
564  case '.': {
565  // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
566  __ Xor(a0, current_character(), Operand(0x01));
567  // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
568  __ Dsubu(a0, a0, Operand(0x0B));
569  BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0C - 0x0B));
570  if (mode_ == UC16) {
571  // Compare original value to 0x2028 and 0x2029, using the already
572  // computed (current_char ^ 0x01 - 0x0B). I.e., check for
573  // 0x201D (0x2028 - 0x0B) or 0x201E.
574  __ Dsubu(a0, a0, Operand(0x2028 - 0x0B));
575  BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
576  }
577  return true;
578  }
579  case 'n': {
580  // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
581  __ Xor(a0, current_character(), Operand(0x01));
582  // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
583  __ Dsubu(a0, a0, Operand(0x0B));
584  if (mode_ == LATIN1) {
585  BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0C - 0x0B));
586  } else {
587  Label done;
588  BranchOrBacktrack(&done, ls, a0, Operand(0x0C - 0x0B));
589  // Compare original value to 0x2028 and 0x2029, using the already
590  // computed (current_char ^ 0x01 - 0x0B). I.e., check for
591  // 0x201D (0x2028 - 0x0B) or 0x201E.
592  __ Dsubu(a0, a0, Operand(0x2028 - 0x0B));
593  BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
594  __ bind(&done);
595  }
596  return true;
597  }
598  case 'w': {
599  if (mode_ != LATIN1) {
600  // Table is 256 entries, so all Latin1 characters can be tested.
601  BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
602  }
603  ExternalReference map = ExternalReference::re_word_character_map(isolate());
604  __ li(a0, Operand(map));
605  __ Daddu(a0, a0, current_character());
606  __ Lbu(a0, MemOperand(a0, 0));
607  BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
608  return true;
609  }
610  case 'W': {
611  Label done;
612  if (mode_ != LATIN1) {
613  // Table is 256 entries, so all Latin1 characters can be tested.
614  __ Branch(&done, hi, current_character(), Operand('z'));
615  }
616  ExternalReference map = ExternalReference::re_word_character_map(isolate());
617  __ li(a0, Operand(map));
618  __ Daddu(a0, a0, current_character());
619  __ Lbu(a0, MemOperand(a0, 0));
620  BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
621  if (mode_ != LATIN1) {
622  __ bind(&done);
623  }
624  return true;
625  }
626  case '*':
627  // Match any character.
628  return true;
629  // No custom implementation (yet): s(UC16), S(UC16).
630  default:
631  return false;
632  }
633 }
634 
635 
636 void RegExpMacroAssemblerMIPS::Fail() {
637  __ li(v0, Operand(FAILURE));
638  __ jmp(&exit_label_);
639 }
640 
641 
642 Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
643  Label return_v0;
644  if (masm_->has_exception()) {
645  // If the code gets corrupted due to long regular expressions and lack of
646  // space on trampolines, an internal exception flag is set. If this case
647  // is detected, we will jump into exit sequence right away.
648  __ bind_to(&entry_label_, internal_failure_label_.pos());
649  } else {
650  // Finalize code - write the entry point code now we know how many
651  // registers we need.
652 
653  // Entry code:
654  __ bind(&entry_label_);
655 
656  // Tell the system that we have a stack frame. Because the type is MANUAL,
657  // no is generated.
658  FrameScope scope(masm_, StackFrame::MANUAL);
659 
660  // Actually emit code to start a new stack frame.
661  // Push arguments
662  // Save callee-save registers.
663  // Start new stack frame.
664  // Store link register in existing stack-cell.
665  // Order here should correspond to order of offset constants in header file.
666  // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
667  // or dont save.
668  RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
669  s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
670  RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
671 
672  argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit();
673 
674  __ MultiPush(argument_registers | registers_to_retain | ra.bit());
675  // Set frame pointer in space for it if this is not a direct call
676  // from generated code.
677  // TODO(plind): this 8 is the # of argument regs, should have definition.
678  __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
679  __ mov(a0, zero_reg);
680  __ push(a0); // Make room for success counter and initialize it to 0.
681  __ push(a0); // Make room for "string start - 1" constant.
682 
683  // Check if we have space on the stack for registers.
684  Label stack_limit_hit;
685  Label stack_ok;
686 
687  ExternalReference stack_limit =
688  ExternalReference::address_of_stack_limit(masm_->isolate());
689  __ li(a0, Operand(stack_limit));
690  __ Ld(a0, MemOperand(a0));
691  __ Dsubu(a0, sp, a0);
692  // Handle it if the stack pointer is already below the stack limit.
693  __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
694  // Check if there is room for the variable number of registers above
695  // the stack limit.
696  __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
697  // Exit with OutOfMemory exception. There is not enough space on the stack
698  // for our working registers.
699  __ li(v0, Operand(EXCEPTION));
700  __ jmp(&return_v0);
701 
702  __ bind(&stack_limit_hit);
703  CallCheckStackGuardState(a0);
704  // If returned value is non-zero, we exit with the returned value as result.
705  __ Branch(&return_v0, ne, v0, Operand(zero_reg));
706 
707  __ bind(&stack_ok);
708  // Allocate space on stack for registers.
709  __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
710  // Load string end.
711  __ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
712  // Load input start.
713  __ Ld(a0, MemOperand(frame_pointer(), kInputStart));
714  // Find negative length (offset of start relative to end).
715  __ Dsubu(current_input_offset(), a0, end_of_input_address());
716  // Set a0 to address of char before start of the input string
717  // (effectively string position -1).
718  __ Ld(a1, MemOperand(frame_pointer(), kStartIndex));
719  __ Dsubu(a0, current_input_offset(), Operand(char_size()));
720  __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
721  __ Dsubu(a0, a0, t1);
722  // Store this value in a local variable, for use when clearing
723  // position registers.
724  __ Sd(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
725 
726  // Initialize code pointer register
727  __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
728 
729  Label load_char_start_regexp, start_regexp;
730  // Load newline if index is at start, previous character otherwise.
731  __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
732  __ li(current_character(), Operand('\n'));
733  __ jmp(&start_regexp);
734 
735  // Global regexp restarts matching here.
736  __ bind(&load_char_start_regexp);
737  // Load previous char as initial value of current character register.
738  LoadCurrentCharacterUnchecked(-1, 1);
739  __ bind(&start_regexp);
740 
741  // Initialize on-stack registers.
742  if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
743  // Fill saved registers with initial value = start offset - 1.
744  if (num_saved_registers_ > 8) {
745  // Address of register 0.
746  __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
747  __ li(a2, Operand(num_saved_registers_));
748  Label init_loop;
749  __ bind(&init_loop);
750  __ Sd(a0, MemOperand(a1));
751  __ Daddu(a1, a1, Operand(-kPointerSize));
752  __ Dsubu(a2, a2, Operand(1));
753  __ Branch(&init_loop, ne, a2, Operand(zero_reg));
754  } else {
755  for (int i = 0; i < num_saved_registers_; i++) {
756  __ Sd(a0, register_location(i));
757  }
758  }
759  }
760 
761  // Initialize backtrack stack pointer.
762  __ Ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
763 
764  __ jmp(&start_label_);
765 
766 
767  // Exit code:
768  if (success_label_.is_linked()) {
769  // Save captures when successful.
770  __ bind(&success_label_);
771  if (num_saved_registers_ > 0) {
772  // Copy captures to output.
773  __ Ld(a1, MemOperand(frame_pointer(), kInputStart));
774  __ Ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
775  __ Ld(a2, MemOperand(frame_pointer(), kStartIndex));
776  __ Dsubu(a1, end_of_input_address(), a1);
777  // a1 is length of input in bytes.
778  if (mode_ == UC16) {
779  __ dsrl(a1, a1, 1);
780  }
781  // a1 is length of input in characters.
782  __ Daddu(a1, a1, Operand(a2));
783  // a1 is length of string in characters.
784 
785  DCHECK_EQ(0, num_saved_registers_ % 2);
786  // Always an even number of capture registers. This allows us to
787  // unroll the loop once to add an operation between a load of a register
788  // and the following use of that register.
789  for (int i = 0; i < num_saved_registers_; i += 2) {
790  __ Ld(a2, register_location(i));
791  __ Ld(a3, register_location(i + 1));
792  if (i == 0 && global_with_zero_length_check()) {
793  // Keep capture start in a4 for the zero-length check later.
794  __ mov(t3, a2);
795  }
796  if (mode_ == UC16) {
797  __ dsra(a2, a2, 1);
798  __ Daddu(a2, a2, a1);
799  __ dsra(a3, a3, 1);
800  __ Daddu(a3, a3, a1);
801  } else {
802  __ Daddu(a2, a1, Operand(a2));
803  __ Daddu(a3, a1, Operand(a3));
804  }
805  // V8 expects the output to be an int32_t array.
806  __ Sw(a2, MemOperand(a0));
807  __ Daddu(a0, a0, kIntSize);
808  __ Sw(a3, MemOperand(a0));
809  __ Daddu(a0, a0, kIntSize);
810  }
811  }
812 
813  if (global()) {
814  // Restart matching if the regular expression is flagged as global.
815  __ Ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
816  __ Ld(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
817  __ Ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
818  // Increment success counter.
819  __ Daddu(a0, a0, 1);
820  __ Sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
821  // Capture results have been stored, so the number of remaining global
822  // output registers is reduced by the number of stored captures.
823  __ Dsubu(a1, a1, num_saved_registers_);
824  // Check whether we have enough room for another set of capture results.
825  __ mov(v0, a0);
826  __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
827 
828  __ Sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
829  // Advance the location for output.
830  __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
831  __ Sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
832 
833  // Prepare a0 to initialize registers with its value in the next run.
834  __ Ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
835 
836  if (global_with_zero_length_check()) {
837  // Special case for zero-length matches.
838  // t3: capture start index
839  // Not a zero-length match, restart.
840  __ Branch(
841  &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
842  // Offset from the end is zero if we already reached the end.
843  __ Branch(&exit_label_, eq, current_input_offset(),
844  Operand(zero_reg));
845  // Advance current position after a zero-length match.
846  Label advance;
847  __ bind(&advance);
848  __ Daddu(current_input_offset(),
849  current_input_offset(),
850  Operand((mode_ == UC16) ? 2 : 1));
851  if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
852  }
853 
854  __ Branch(&load_char_start_regexp);
855  } else {
856  __ li(v0, Operand(SUCCESS));
857  }
858  }
859  // Exit and return v0.
860  __ bind(&exit_label_);
861  if (global()) {
862  __ Ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
863  }
864 
865  __ bind(&return_v0);
866  // Skip sp past regexp registers and local variables..
867  __ mov(sp, frame_pointer());
868  // Restore registers s0..s7 and return (restoring ra to pc).
869  __ MultiPop(registers_to_retain | ra.bit());
870  __ Ret();
871 
872  // Backtrack code (branch target for conditional backtracks).
873  if (backtrack_label_.is_linked()) {
874  __ bind(&backtrack_label_);
875  Backtrack();
876  }
877 
878  Label exit_with_exception;
879 
880  // Preempt-code.
881  if (check_preempt_label_.is_linked()) {
882  SafeCallTarget(&check_preempt_label_);
883  // Put regexp engine registers on stack.
884  RegList regexp_registers_to_retain = current_input_offset().bit() |
885  current_character().bit() | backtrack_stackpointer().bit();
886  __ MultiPush(regexp_registers_to_retain);
887  CallCheckStackGuardState(a0);
888  __ MultiPop(regexp_registers_to_retain);
889  // If returning non-zero, we should end execution with the given
890  // result as return value.
891  __ Branch(&return_v0, ne, v0, Operand(zero_reg));
892 
893  // String might have moved: Reload end of string from frame.
894  __ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
895  __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
896  SafeReturn();
897  }
898 
899  // Backtrack stack overflow code.
900  if (stack_overflow_label_.is_linked()) {
901  SafeCallTarget(&stack_overflow_label_);
902  // Reached if the backtrack-stack limit has been hit.
903  // Put regexp engine registers on stack first.
904  RegList regexp_registers = current_input_offset().bit() |
905  current_character().bit();
906  __ MultiPush(regexp_registers);
907  Label grow_failed;
908  // Call GrowStack(backtrack_stackpointer(), &stack_base)
909  static const int num_arguments = 3;
910  __ PrepareCallCFunction(num_arguments, a0);
911  __ mov(a0, backtrack_stackpointer());
912  __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd));
913  __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
914  ExternalReference grow_stack =
915  ExternalReference::re_grow_stack(masm_->isolate());
916  __ CallCFunction(grow_stack, num_arguments);
917  // Restore regexp registers.
918  __ MultiPop(regexp_registers);
919  // If return nullptr, we have failed to grow the stack, and
920  // must exit with a stack-overflow exception.
921  __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
922  // Otherwise use return value as new stack pointer.
923  __ mov(backtrack_stackpointer(), v0);
924  // Restore saved registers and continue.
925  __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
926  __ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
927  SafeReturn();
928  }
929 
930  if (exit_with_exception.is_linked()) {
931  // If any of the code above needed to exit with an exception.
932  __ bind(&exit_with_exception);
933  // Exit with Result EXCEPTION(-1) to signal thrown exception.
934  __ li(v0, Operand(EXCEPTION));
935  __ jmp(&return_v0);
936  }
937  }
938 
939  CodeDesc code_desc;
940  masm_->GetCode(isolate(), &code_desc);
941  Handle<Code> code = isolate()->factory()->NewCode(code_desc, Code::REGEXP,
942  masm_->CodeObject());
943  LOG(masm_->isolate(),
944  RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
945  return Handle<HeapObject>::cast(code);
946 }
947 
948 
949 void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
950  if (to == nullptr) {
951  Backtrack();
952  return;
953  }
954  __ jmp(to);
955  return;
956 }
957 
958 
959 void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
960  int comparand,
961  Label* if_ge) {
962  __ Ld(a0, register_location(reg));
963  BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
964 }
965 
966 
967 void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
968  int comparand,
969  Label* if_lt) {
970  __ Ld(a0, register_location(reg));
971  BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
972 }
973 
974 
975 void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
976  Label* if_eq) {
977  __ Ld(a0, register_location(reg));
978  BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
979 }
980 
981 
982 RegExpMacroAssembler::IrregexpImplementation
983  RegExpMacroAssemblerMIPS::Implementation() {
984  return kMIPSImplementation;
985 }
986 
987 
988 void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
989  Label* on_end_of_input,
990  bool check_bounds,
991  int characters) {
992  DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works).
993  if (check_bounds) {
994  if (cp_offset >= 0) {
995  CheckPosition(cp_offset + characters - 1, on_end_of_input);
996  } else {
997  CheckPosition(cp_offset, on_end_of_input);
998  }
999  }
1000  LoadCurrentCharacterUnchecked(cp_offset, characters);
1001 }
1002 
1003 
1004 void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
1005  Pop(current_input_offset());
1006 }
1007 
1008 
1009 void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
1010  Pop(a0);
1011  __ Sd(a0, register_location(register_index));
1012 }
1013 
1014 
1015 void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
1016  if (label->is_bound()) {
1017  int target = label->pos();
1018  __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
1019  } else {
1020  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
1021  Label after_constant;
1022  __ Branch(&after_constant);
1023  int offset = masm_->pc_offset();
1024  int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
1025  __ emit(0);
1026  masm_->label_at_put(label, offset);
1027  __ bind(&after_constant);
1028  if (is_int16(cp_offset)) {
1029  __ Lwu(a0, MemOperand(code_pointer(), cp_offset));
1030  } else {
1031  __ Daddu(a0, code_pointer(), cp_offset);
1032  __ Lwu(a0, MemOperand(a0, 0));
1033  }
1034  }
1035  Push(a0);
1036  CheckStackLimit();
1037 }
1038 
1039 
1040 void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
1041  Push(current_input_offset());
1042 }
1043 
1044 
1045 void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
1046  StackCheckFlag check_stack_limit) {
1047  __ Ld(a0, register_location(register_index));
1048  Push(a0);
1049  if (check_stack_limit) CheckStackLimit();
1050 }
1051 
1052 
1053 void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
1054  __ Ld(current_input_offset(), register_location(reg));
1055 }
1056 
1057 
1058 void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
1059  __ Ld(backtrack_stackpointer(), register_location(reg));
1060  __ Ld(a0, MemOperand(frame_pointer(), kStackHighEnd));
1061  __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
1062 }
1063 
1064 
1065 void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
1066  Label after_position;
1067  __ Branch(&after_position,
1068  ge,
1069  current_input_offset(),
1070  Operand(-by * char_size()));
1071  __ li(current_input_offset(), -by * char_size());
1072  // On RegExp code entry (where this operation is used), the character before
1073  // the current position is expected to be already loaded.
1074  // We have advanced the position, so it's safe to read backwards.
1075  LoadCurrentCharacterUnchecked(-1, 1);
1076  __ bind(&after_position);
1077 }
1078 
1079 
1080 void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
1081  DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
1082  __ li(a0, Operand(to));
1083  __ Sd(a0, register_location(register_index));
1084 }
1085 
1086 
1087 bool RegExpMacroAssemblerMIPS::Succeed() {
1088  __ jmp(&success_label_);
1089  return global();
1090 }
1091 
1092 
1093 void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
1094  int cp_offset) {
1095  if (cp_offset == 0) {
1096  __ Sd(current_input_offset(), register_location(reg));
1097  } else {
1098  __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1099  __ Sd(a0, register_location(reg));
1100  }
1101 }
1102 
1103 
1104 void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
1105  DCHECK(reg_from <= reg_to);
1106  __ Ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
1107  for (int reg = reg_from; reg <= reg_to; reg++) {
1108  __ Sd(a0, register_location(reg));
1109  }
1110 }
1111 
1112 
1113 void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
1114  __ Ld(a1, MemOperand(frame_pointer(), kStackHighEnd));
1115  __ Dsubu(a0, backtrack_stackpointer(), a1);
1116  __ Sd(a0, register_location(reg));
1117 }
1118 
1119 
1120 bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
1121  return false;
1122 }
1123 
1124 
1125 // Private methods:
1126 
1127 void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
1128  int stack_alignment = base::OS::ActivationFrameAlignment();
1129 
1130  // Align the stack pointer and save the original sp value on the stack.
1131  __ mov(scratch, sp);
1132  __ Dsubu(sp, sp, Operand(kPointerSize));
1133  DCHECK(base::bits::IsPowerOfTwo(stack_alignment));
1134  __ And(sp, sp, Operand(-stack_alignment));
1135  __ Sd(scratch, MemOperand(sp));
1136 
1137  __ mov(a2, frame_pointer());
1138  // Code of self.
1139  __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
1140 
1141  // We need to make room for the return address on the stack.
1142  DCHECK(IsAligned(stack_alignment, kPointerSize));
1143  __ Dsubu(sp, sp, Operand(stack_alignment));
1144 
1145  // Stack pointer now points to cell where return address is to be written.
1146  // Arguments are in registers, meaning we teat the return address as
1147  // argument 5. Since DirectCEntryStub will handleallocating space for the C
1148  // argument slots, we don't need to care about that here. This is how the
1149  // stack will look (sp meaning the value of sp at this moment):
1150  // [sp + 3] - empty slot if needed for alignment.
1151  // [sp + 2] - saved sp.
1152  // [sp + 1] - second word reserved for return value.
1153  // [sp + 0] - first word reserved for return value.
1154 
1155  // a0 will point to the return address, placed by DirectCEntry.
1156  __ mov(a0, sp);
1157 
1158  ExternalReference stack_guard_check =
1159  ExternalReference::re_check_stack_guard_state(masm_->isolate());
1160  __ li(t9, Operand(stack_guard_check));
1161  DirectCEntryStub stub(isolate());
1162  stub.GenerateCall(masm_, t9);
1163 
1164  // DirectCEntryStub allocated space for the C argument slots so we have to
1165  // drop them with the return address from the stack with loading saved sp.
1166  // At this point stack must look:
1167  // [sp + 7] - empty slot if needed for alignment.
1168  // [sp + 6] - saved sp.
1169  // [sp + 5] - second word reserved for return value.
1170  // [sp + 4] - first word reserved for return value.
1171  // [sp + 3] - C argument slot.
1172  // [sp + 2] - C argument slot.
1173  // [sp + 1] - C argument slot.
1174  // [sp + 0] - C argument slot.
1175  __ Ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
1176 
1177  __ li(code_pointer(), Operand(masm_->CodeObject()));
1178 }
1179 
1180 
1181 // Helper function for reading a value out of a stack frame.
1182 template <typename T>
1183 static T& frame_entry(Address re_frame, int frame_offset) {
1184  return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
1185 }
1186 
1187 
1188 template <typename T>
1189 static T* frame_entry_address(Address re_frame, int frame_offset) {
1190  return reinterpret_cast<T*>(re_frame + frame_offset);
1191 }
1192 
1193 int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
1194  Address raw_code,
1195  Address re_frame) {
1196  Code re_code = Code::cast(ObjectPtr(raw_code));
1197  return NativeRegExpMacroAssembler::CheckStackGuardState(
1198  frame_entry<Isolate*>(re_frame, kIsolate),
1199  static_cast<int>(frame_entry<int64_t>(re_frame, kStartIndex)),
1200  frame_entry<int64_t>(re_frame, kDirectCall) == 1, return_address, re_code,
1201  frame_entry_address<Address>(re_frame, kInputString),
1202  frame_entry_address<const byte*>(re_frame, kInputStart),
1203  frame_entry_address<const byte*>(re_frame, kInputEnd));
1204 }
1205 
1206 
1207 MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
1208  DCHECK(register_index < (1<<30));
1209  if (num_registers_ <= register_index) {
1210  num_registers_ = register_index + 1;
1211  }
1212  return MemOperand(frame_pointer(),
1213  kRegisterZero - register_index * kPointerSize);
1214 }
1215 
1216 
1217 void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
1218  Label* on_outside_input) {
1219  if (cp_offset >= 0) {
1220  BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
1221  Operand(-cp_offset * char_size()));
1222  } else {
1223  __ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
1224  __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1225  BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
1226  }
1227 }
1228 
1229 
1230 void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
1231  Condition condition,
1232  Register rs,
1233  const Operand& rt) {
1234  if (condition == al) { // Unconditional.
1235  if (to == nullptr) {
1236  Backtrack();
1237  return;
1238  }
1239  __ jmp(to);
1240  return;
1241  }
1242  if (to == nullptr) {
1243  __ Branch(&backtrack_label_, condition, rs, rt);
1244  return;
1245  }
1246  __ Branch(to, condition, rs, rt);
1247 }
1248 
1249 
1250 void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
1251  Condition cond,
1252  Register rs,
1253  const Operand& rt) {
1254  __ BranchAndLink(to, cond, rs, rt);
1255 }
1256 
1257 
1258 void RegExpMacroAssemblerMIPS::SafeReturn() {
1259  __ pop(ra);
1260  __ Daddu(t1, ra, Operand(masm_->CodeObject()));
1261  __ Jump(t1);
1262 }
1263 
1264 
1265 void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
1266  __ bind(name);
1267  __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
1268  __ push(ra);
1269 }
1270 
1271 
1272 void RegExpMacroAssemblerMIPS::Push(Register source) {
1273  DCHECK(source != backtrack_stackpointer());
1274  __ Daddu(backtrack_stackpointer(),
1275  backtrack_stackpointer(),
1276  Operand(-kIntSize));
1277  __ Sw(source, MemOperand(backtrack_stackpointer()));
1278 }
1279 
1280 
1281 void RegExpMacroAssemblerMIPS::Pop(Register target) {
1282  DCHECK(target != backtrack_stackpointer());
1283  __ Lw(target, MemOperand(backtrack_stackpointer()));
1284  __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
1285 }
1286 
1287 
1288 void RegExpMacroAssemblerMIPS::CheckPreemption() {
1289  // Check for preemption.
1290  ExternalReference stack_limit =
1291  ExternalReference::address_of_stack_limit(masm_->isolate());
1292  __ li(a0, Operand(stack_limit));
1293  __ Ld(a0, MemOperand(a0));
1294  SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
1295 }
1296 
1297 
1298 void RegExpMacroAssemblerMIPS::CheckStackLimit() {
1299  ExternalReference stack_limit =
1300  ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
1301 
1302  __ li(a0, Operand(stack_limit));
1303  __ Ld(a0, MemOperand(a0));
1304  SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
1305 }
1306 
1307 
1308 void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
1309  int characters) {
1310  Register offset = current_input_offset();
1311  if (cp_offset != 0) {
1312  // t3 is not being used to store the capture start index at this point.
1313  __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
1314  offset = t3;
1315  }
1316  // We assume that we cannot do unaligned loads on MIPS, so this function
1317  // must only be used to load a single character at a time.
1318  DCHECK_EQ(1, characters);
1319  __ Daddu(t1, end_of_input_address(), Operand(offset));
1320  if (mode_ == LATIN1) {
1321  __ Lbu(current_character(), MemOperand(t1, 0));
1322  } else {
1323  DCHECK(mode_ == UC16);
1324  __ Lhu(current_character(), MemOperand(t1, 0));
1325  }
1326 }
1327 
1328 #undef __
1329 
1330 #endif // V8_INTERPRETED_REGEXP
1331 
1332 } // namespace internal
1333 } // namespace v8
1334 
1335 #endif // V8_TARGET_ARCH_MIPS64
Definition: libplatform.h:13