V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
heap-controller.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/heap/heap-controller.h"
6 #include "src/isolate-inl.h"
7 
8 namespace v8 {
9 namespace internal {
10 
11 // Given GC speed in bytes per ms, the allocation throughput in bytes per ms
12 // (mutator speed), this function returns the heap growing factor that will
13 // achieve the target_mutator_utilization_ if the GC speed and the mutator speed
14 // remain the same until the next GC.
15 //
16 // For a fixed time-frame T = TM + TG, the mutator utilization is the ratio
17 // TM / (TM + TG), where TM is the time spent in the mutator and TG is the
18 // time spent in the garbage collector.
19 //
20 // Let MU be target_mutator_utilization_, the desired mutator utilization for
21 // the time-frame from the end of the current GC to the end of the next GC.
22 // Based on the MU we can compute the heap growing factor F as
23 //
24 // F = R * (1 - MU) / (R * (1 - MU) - MU), where R = gc_speed / mutator_speed.
25 //
26 // This formula can be derived as follows.
27 //
28 // F = Limit / Live by definition, where the Limit is the allocation limit,
29 // and the Live is size of live objects.
30 // Let’s assume that we already know the Limit. Then:
31 // TG = Limit / gc_speed
32 // TM = (TM + TG) * MU, by definition of MU.
33 // TM = TG * MU / (1 - MU)
34 // TM = Limit * MU / (gc_speed * (1 - MU))
35 // On the other hand, if the allocation throughput remains constant:
36 // Limit = Live + TM * allocation_throughput = Live + TM * mutator_speed
37 // Solving it for TM, we get
38 // TM = (Limit - Live) / mutator_speed
39 // Combining the two equation for TM:
40 // (Limit - Live) / mutator_speed = Limit * MU / (gc_speed * (1 - MU))
41 // (Limit - Live) = Limit * MU * mutator_speed / (gc_speed * (1 - MU))
42 // substitute R = gc_speed / mutator_speed
43 // (Limit - Live) = Limit * MU / (R * (1 - MU))
44 // substitute F = Limit / Live
45 // F - 1 = F * MU / (R * (1 - MU))
46 // F - F * MU / (R * (1 - MU)) = 1
47 // F * (1 - MU / (R * (1 - MU))) = 1
48 // F * (R * (1 - MU) - MU) / (R * (1 - MU)) = 1
49 // F = R * (1 - MU) / (R * (1 - MU) - MU)
50 double MemoryController::GrowingFactor(double gc_speed, double mutator_speed,
51  double max_factor) {
52  DCHECK_LE(min_growing_factor_, max_factor);
53  DCHECK_GE(max_growing_factor_, max_factor);
54  if (gc_speed == 0 || mutator_speed == 0) return max_factor;
55 
56  const double speed_ratio = gc_speed / mutator_speed;
57 
58  const double a = speed_ratio * (1 - target_mutator_utilization_);
59  const double b = speed_ratio * (1 - target_mutator_utilization_) -
60  target_mutator_utilization_;
61 
62  // The factor is a / b, but we need to check for small b first.
63  double factor = (a < b * max_factor) ? a / b : max_factor;
64  factor = Min(factor, max_factor);
65  factor = Max(factor, min_growing_factor_);
66  return factor;
67 }
68 
69 size_t MemoryController::CalculateAllocationLimit(
70  size_t curr_size, size_t max_size, double max_factor, double gc_speed,
71  double mutator_speed, size_t new_space_capacity,
72  Heap::HeapGrowingMode growing_mode) {
73  double factor = GrowingFactor(gc_speed, mutator_speed, max_factor);
74 
75  if (FLAG_trace_gc_verbose) {
76  heap_->isolate()->PrintWithTimestamp(
77  "%s factor %.1f based on mu=%.3f, speed_ratio=%.f "
78  "(gc=%.f, mutator=%.f)\n",
79  ControllerName(), factor, target_mutator_utilization_,
80  gc_speed / mutator_speed, gc_speed, mutator_speed);
81  }
82 
83  if (growing_mode == Heap::HeapGrowingMode::kConservative ||
84  growing_mode == Heap::HeapGrowingMode::kSlow) {
85  factor = Min(factor, conservative_growing_factor_);
86  }
87 
88  if (growing_mode == Heap::HeapGrowingMode::kMinimal) {
89  factor = min_growing_factor_;
90  }
91 
92  if (FLAG_heap_growing_percent > 0) {
93  factor = 1.0 + FLAG_heap_growing_percent / 100.0;
94  }
95 
96  CHECK_LT(1.0, factor);
97  CHECK_LT(0, curr_size);
98  uint64_t limit = static_cast<uint64_t>(curr_size * factor);
99  limit = Max(limit, static_cast<uint64_t>(curr_size) +
100  MinimumAllocationLimitGrowingStep(growing_mode));
101  limit += new_space_capacity;
102  uint64_t halfway_to_the_max =
103  (static_cast<uint64_t>(curr_size) + max_size) / 2;
104  size_t result = static_cast<size_t>(Min(limit, halfway_to_the_max));
105 
106  if (FLAG_trace_gc_verbose) {
107  heap_->isolate()->PrintWithTimestamp(
108  "%s Limit: old size: %" PRIuS " KB, new limit: %" PRIuS " KB (%.1f)\n",
109  ControllerName(), curr_size / KB, result / KB, factor);
110  }
111 
112  return result;
113 }
114 
115 size_t MemoryController::MinimumAllocationLimitGrowingStep(
116  Heap::HeapGrowingMode growing_mode) {
117  const size_t kRegularAllocationLimitGrowingStep = 8;
118  const size_t kLowMemoryAllocationLimitGrowingStep = 2;
119  size_t limit = (Page::kPageSize > MB ? Page::kPageSize : MB);
120  return limit * (growing_mode == Heap::HeapGrowingMode::kConservative
121  ? kLowMemoryAllocationLimitGrowingStep
122  : kRegularAllocationLimitGrowingStep);
123 }
124 
125 double HeapController::MaxGrowingFactor(size_t curr_max_size) {
126  const double min_small_factor = 1.3;
127  const double max_small_factor = 2.0;
128  const double high_factor = 4.0;
129 
130  size_t max_size_in_mb = curr_max_size / MB;
131  max_size_in_mb = Max(max_size_in_mb, kMinSize);
132 
133  // If we are on a device with lots of memory, we allow a high heap
134  // growing factor.
135  if (max_size_in_mb >= kMaxSize) {
136  return high_factor;
137  }
138 
139  DCHECK_GE(max_size_in_mb, kMinSize);
140  DCHECK_LT(max_size_in_mb, kMaxSize);
141 
142  // On smaller devices we linearly scale the factor: (X-A)/(B-A)*(D-C)+C
143  double factor = (max_size_in_mb - kMinSize) *
144  (max_small_factor - min_small_factor) /
145  (kMaxSize - kMinSize) +
146  min_small_factor;
147  return factor;
148 }
149 
150 } // namespace internal
151 } // namespace v8
Definition: libplatform.h:13