V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
fast-dtoa.cc
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <stdint.h>
6 #include "src/base/logging.h"
7 #include "src/utils.h"
8 
9 #include "src/fast-dtoa.h"
10 
11 #include "src/cached-powers.h"
12 #include "src/diy-fp.h"
13 #include "src/double.h"
14 
15 namespace v8 {
16 namespace internal {
17 
18 // The minimal and maximal target exponent define the range of w's binary
19 // exponent, where 'w' is the result of multiplying the input by a cached power
20 // of ten.
21 //
22 // A different range might be chosen on a different platform, to optimize digit
23 // generation, but a smaller range requires more powers of ten to be cached.
24 static const int kMinimalTargetExponent = -60;
25 static const int kMaximalTargetExponent = -32;
26 
27 
28 // Adjusts the last digit of the generated number, and screens out generated
29 // solutions that may be inaccurate. A solution may be inaccurate if it is
30 // outside the safe interval, or if we ctannot prove that it is closer to the
31 // input than a neighboring representation of the same length.
32 //
33 // Input: * buffer containing the digits of too_high / 10^kappa
34 // * the buffer's length
35 // * distance_too_high_w == (too_high - w).f() * unit
36 // * unsafe_interval == (too_high - too_low).f() * unit
37 // * rest = (too_high - buffer * 10^kappa).f() * unit
38 // * ten_kappa = 10^kappa * unit
39 // * unit = the common multiplier
40 // Output: returns true if the buffer is guaranteed to contain the closest
41 // representable number to the input.
42 // Modifies the generated digits in the buffer to approach (round towards) w.
43 static bool RoundWeed(Vector<char> buffer,
44  int length,
45  uint64_t distance_too_high_w,
46  uint64_t unsafe_interval,
47  uint64_t rest,
48  uint64_t ten_kappa,
49  uint64_t unit) {
50  uint64_t small_distance = distance_too_high_w - unit;
51  uint64_t big_distance = distance_too_high_w + unit;
52  // Let w_low = too_high - big_distance, and
53  // w_high = too_high - small_distance.
54  // Note: w_low < w < w_high
55  //
56  // The real w (* unit) must lie somewhere inside the interval
57  // ]w_low; w_high[ (often written as "(w_low; w_high)")
58 
59  // Basically the buffer currently contains a number in the unsafe interval
60  // ]too_low; too_high[ with too_low < w < too_high
61  //
62  // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
63  // ^v 1 unit ^ ^ ^ ^
64  // boundary_high --------------------- . . . .
65  // ^v 1 unit . . . .
66  // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
67  // . . ^ . .
68  // . big_distance . . .
69  // . . . . rest
70  // small_distance . . . .
71  // v . . . .
72  // w_high - - - - - - - - - - - - - - - - - - . . . .
73  // ^v 1 unit . . . .
74  // w ---------------------------------------- . . . .
75  // ^v 1 unit v . . .
76  // w_low - - - - - - - - - - - - - - - - - - - - - . . .
77  // . . v
78  // buffer --------------------------------------------------+-------+--------
79  // . .
80  // safe_interval .
81  // v .
82  // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
83  // ^v 1 unit .
84  // boundary_low ------------------------- unsafe_interval
85  // ^v 1 unit v
86  // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
87  //
88  //
89  // Note that the value of buffer could lie anywhere inside the range too_low
90  // to too_high.
91  //
92  // boundary_low, boundary_high and w are approximations of the real boundaries
93  // and v (the input number). They are guaranteed to be precise up to one unit.
94  // In fact the error is guaranteed to be strictly less than one unit.
95  //
96  // Anything that lies outside the unsafe interval is guaranteed not to round
97  // to v when read again.
98  // Anything that lies inside the safe interval is guaranteed to round to v
99  // when read again.
100  // If the number inside the buffer lies inside the unsafe interval but not
101  // inside the safe interval then we simply do not know and bail out (returning
102  // false).
103  //
104  // Similarly we have to take into account the imprecision of 'w' when finding
105  // the closest representation of 'w'. If we have two potential
106  // representations, and one is closer to both w_low and w_high, then we know
107  // it is closer to the actual value v.
108  //
109  // By generating the digits of too_high we got the largest (closest to
110  // too_high) buffer that is still in the unsafe interval. In the case where
111  // w_high < buffer < too_high we try to decrement the buffer.
112  // This way the buffer approaches (rounds towards) w.
113  // There are 3 conditions that stop the decrementation process:
114  // 1) the buffer is already below w_high
115  // 2) decrementing the buffer would make it leave the unsafe interval
116  // 3) decrementing the buffer would yield a number below w_high and farther
117  // away than the current number. In other words:
118  // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
119  // Instead of using the buffer directly we use its distance to too_high.
120  // Conceptually rest ~= too_high - buffer
121  // We need to do the following tests in this order to avoid over- and
122  // underflows.
123  DCHECK(rest <= unsafe_interval);
124  while (rest < small_distance && // Negated condition 1
125  unsafe_interval - rest >= ten_kappa && // Negated condition 2
126  (rest + ten_kappa < small_distance || // buffer{-1} > w_high
127  small_distance - rest >= rest + ten_kappa - small_distance)) {
128  buffer[length - 1]--;
129  rest += ten_kappa;
130  }
131 
132  // We have approached w+ as much as possible. We now test if approaching w-
133  // would require changing the buffer. If yes, then we have two possible
134  // representations close to w, but we cannot decide which one is closer.
135  if (rest < big_distance &&
136  unsafe_interval - rest >= ten_kappa &&
137  (rest + ten_kappa < big_distance ||
138  big_distance - rest > rest + ten_kappa - big_distance)) {
139  return false;
140  }
141 
142  // Weeding test.
143  // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
144  // Since too_low = too_high - unsafe_interval this is equivalent to
145  // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
146  // Conceptually we have: rest ~= too_high - buffer
147  return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
148 }
149 
150 
151 // Rounds the buffer upwards if the result is closer to v by possibly adding
152 // 1 to the buffer. If the precision of the calculation is not sufficient to
153 // round correctly, return false.
154 // The rounding might shift the whole buffer in which case the kappa is
155 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
156 //
157 // If 2*rest > ten_kappa then the buffer needs to be round up.
158 // rest can have an error of +/- 1 unit. This function accounts for the
159 // imprecision and returns false, if the rounding direction cannot be
160 // unambiguously determined.
161 //
162 // Precondition: rest < ten_kappa.
163 static bool RoundWeedCounted(Vector<char> buffer,
164  int length,
165  uint64_t rest,
166  uint64_t ten_kappa,
167  uint64_t unit,
168  int* kappa) {
169  DCHECK(rest < ten_kappa);
170  // The following tests are done in a specific order to avoid overflows. They
171  // will work correctly with any uint64 values of rest < ten_kappa and unit.
172  //
173  // If the unit is too big, then we don't know which way to round. For example
174  // a unit of 50 means that the real number lies within rest +/- 50. If
175  // 10^kappa == 40 then there is no way to tell which way to round.
176  if (unit >= ten_kappa) return false;
177  // Even if unit is just half the size of 10^kappa we are already completely
178  // lost. (And after the previous test we know that the expression will not
179  // over/underflow.)
180  if (ten_kappa - unit <= unit) return false;
181  // If 2 * (rest + unit) <= 10^kappa we can safely round down.
182  if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
183  return true;
184  }
185  // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
186  if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
187  // Increment the last digit recursively until we find a non '9' digit.
188  buffer[length - 1]++;
189  for (int i = length - 1; i > 0; --i) {
190  if (buffer[i] != '0' + 10) break;
191  buffer[i] = '0';
192  buffer[i - 1]++;
193  }
194  // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
195  // exception of the first digit all digits are now '0'. Simply switch the
196  // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
197  // the power (the kappa) is increased.
198  if (buffer[0] == '0' + 10) {
199  buffer[0] = '1';
200  (*kappa) += 1;
201  }
202  return true;
203  }
204  return false;
205 }
206 
207 
208 static const uint32_t kTen4 = 10000;
209 static const uint32_t kTen5 = 100000;
210 static const uint32_t kTen6 = 1000000;
211 static const uint32_t kTen7 = 10000000;
212 static const uint32_t kTen8 = 100000000;
213 static const uint32_t kTen9 = 1000000000;
214 
215 // Returns the biggest power of ten that is less than or equal than the given
216 // number. We furthermore receive the maximum number of bits 'number' has.
217 // If number_bits == 0 then 0^-1 is returned
218 // The number of bits must be <= 32.
219 // Precondition: number < (1 << (number_bits + 1)).
220 static void BiggestPowerTen(uint32_t number,
221  int number_bits,
222  uint32_t* power,
223  int* exponent) {
224  switch (number_bits) {
225  case 32:
226  case 31:
227  case 30:
228  if (kTen9 <= number) {
229  *power = kTen9;
230  *exponent = 9;
231  break;
232  }
233  V8_FALLTHROUGH;
234  case 29:
235  case 28:
236  case 27:
237  if (kTen8 <= number) {
238  *power = kTen8;
239  *exponent = 8;
240  break;
241  }
242  V8_FALLTHROUGH;
243  case 26:
244  case 25:
245  case 24:
246  if (kTen7 <= number) {
247  *power = kTen7;
248  *exponent = 7;
249  break;
250  }
251  V8_FALLTHROUGH;
252  case 23:
253  case 22:
254  case 21:
255  case 20:
256  if (kTen6 <= number) {
257  *power = kTen6;
258  *exponent = 6;
259  break;
260  }
261  V8_FALLTHROUGH;
262  case 19:
263  case 18:
264  case 17:
265  if (kTen5 <= number) {
266  *power = kTen5;
267  *exponent = 5;
268  break;
269  }
270  V8_FALLTHROUGH;
271  case 16:
272  case 15:
273  case 14:
274  if (kTen4 <= number) {
275  *power = kTen4;
276  *exponent = 4;
277  break;
278  }
279  V8_FALLTHROUGH;
280  case 13:
281  case 12:
282  case 11:
283  case 10:
284  if (1000 <= number) {
285  *power = 1000;
286  *exponent = 3;
287  break;
288  }
289  V8_FALLTHROUGH;
290  case 9:
291  case 8:
292  case 7:
293  if (100 <= number) {
294  *power = 100;
295  *exponent = 2;
296  break;
297  }
298  V8_FALLTHROUGH;
299  case 6:
300  case 5:
301  case 4:
302  if (10 <= number) {
303  *power = 10;
304  *exponent = 1;
305  break;
306  }
307  V8_FALLTHROUGH;
308  case 3:
309  case 2:
310  case 1:
311  if (1 <= number) {
312  *power = 1;
313  *exponent = 0;
314  break;
315  }
316  V8_FALLTHROUGH;
317  case 0:
318  *power = 0;
319  *exponent = -1;
320  break;
321  default:
322  // Following assignments are here to silence compiler warnings.
323  *power = 0;
324  *exponent = 0;
325  UNREACHABLE();
326  }
327 }
328 
329 // Generates the digits of input number w.
330 // w is a floating-point number (DiyFp), consisting of a significand and an
331 // exponent. Its exponent is bounded by kMinimalTargetExponent and
332 // kMaximalTargetExponent.
333 // Hence -60 <= w.e() <= -32.
334 //
335 // Returns false if it fails, in which case the generated digits in the buffer
336 // should not be used.
337 // Preconditions:
338 // * low, w and high are correct up to 1 ulp (unit in the last place). That
339 // is, their error must be less than a unit of their last digits.
340 // * low.e() == w.e() == high.e()
341 // * low < w < high, and taking into account their error: low~ <= high~
342 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
343 // Postconditions: returns false if procedure fails.
344 // otherwise:
345 // * buffer is not null-terminated, but len contains the number of digits.
346 // * buffer contains the shortest possible decimal digit-sequence
347 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
348 // correct values of low and high (without their error).
349 // * if more than one decimal representation gives the minimal number of
350 // decimal digits then the one closest to W (where W is the correct value
351 // of w) is chosen.
352 // Remark: this procedure takes into account the imprecision of its input
353 // numbers. If the precision is not enough to guarantee all the postconditions
354 // then false is returned. This usually happens rarely (~0.5%).
355 //
356 // Say, for the sake of example, that
357 // w.e() == -48, and w.f() == 0x1234567890ABCDEF
358 // w's value can be computed by w.f() * 2^w.e()
359 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
360 // -> w's integral part is 0x1234
361 // w's fractional part is therefore 0x567890ABCDEF.
362 // Printing w's integral part is easy (simply print 0x1234 in decimal).
363 // In order to print its fraction we repeatedly multiply the fraction by 10 and
364 // get each digit. Example the first digit after the point would be computed by
365 // (0x567890ABCDEF * 10) >> 48. -> 3
366 // The whole thing becomes slightly more complicated because we want to stop
367 // once we have enough digits. That is, once the digits inside the buffer
368 // represent 'w' we can stop. Everything inside the interval low - high
369 // represents w. However we have to pay attention to low, high and w's
370 // imprecision.
371 static bool DigitGen(DiyFp low,
372  DiyFp w,
373  DiyFp high,
374  Vector<char> buffer,
375  int* length,
376  int* kappa) {
377  DCHECK(low.e() == w.e() && w.e() == high.e());
378  DCHECK(low.f() + 1 <= high.f() - 1);
379  DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
380  // low, w and high are imprecise, but by less than one ulp (unit in the last
381  // place).
382  // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
383  // the new numbers are outside of the interval we want the final
384  // representation to lie in.
385  // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
386  // numbers that are certain to lie in the interval. We will use this fact
387  // later on.
388  // We will now start by generating the digits within the uncertain
389  // interval. Later we will weed out representations that lie outside the safe
390  // interval and thus _might_ lie outside the correct interval.
391  uint64_t unit = 1;
392  DiyFp too_low = DiyFp(low.f() - unit, low.e());
393  DiyFp too_high = DiyFp(high.f() + unit, high.e());
394  // too_low and too_high are guaranteed to lie outside the interval we want the
395  // generated number in.
396  DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
397  // We now cut the input number into two parts: the integral digits and the
398  // fractionals. We will not write any decimal separator though, but adapt
399  // kappa instead.
400  // Reminder: we are currently computing the digits (stored inside the buffer)
401  // such that: too_low < buffer * 10^kappa < too_high
402  // We use too_high for the digit_generation and stop as soon as possible.
403  // If we stop early we effectively round down.
404  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
405  // Division by one is a shift.
406  uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
407  // Modulo by one is an and.
408  uint64_t fractionals = too_high.f() & (one.f() - 1);
409  uint32_t divisor;
410  int divisor_exponent;
411  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
412  &divisor, &divisor_exponent);
413  *kappa = divisor_exponent + 1;
414  *length = 0;
415  // Loop invariant: buffer = too_high / 10^kappa (integer division)
416  // The invariant holds for the first iteration: kappa has been initialized
417  // with the divisor exponent + 1. And the divisor is the biggest power of ten
418  // that is smaller than integrals.
419  while (*kappa > 0) {
420  int digit = integrals / divisor;
421  buffer[*length] = '0' + digit;
422  (*length)++;
423  integrals %= divisor;
424  (*kappa)--;
425  // Note that kappa now equals the exponent of the divisor and that the
426  // invariant thus holds again.
427  uint64_t rest =
428  (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
429  // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
430  // Reminder: unsafe_interval.e() == one.e()
431  if (rest < unsafe_interval.f()) {
432  // Rounding down (by not emitting the remaining digits) yields a number
433  // that lies within the unsafe interval.
434  return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
435  unsafe_interval.f(), rest,
436  static_cast<uint64_t>(divisor) << -one.e(), unit);
437  }
438  divisor /= 10;
439  }
440 
441  // The integrals have been generated. We are at the point of the decimal
442  // separator. In the following loop we simply multiply the remaining digits by
443  // 10 and divide by one. We just need to pay attention to multiply associated
444  // data (like the interval or 'unit'), too.
445  // Note that the multiplication by 10 does not overflow, because w.e >= -60
446  // and thus one.e >= -60.
447  DCHECK_GE(one.e(), -60);
448  DCHECK(fractionals < one.f());
449  DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
450  while (true) {
451  fractionals *= 10;
452  unit *= 10;
453  unsafe_interval.set_f(unsafe_interval.f() * 10);
454  // Integer division by one.
455  int digit = static_cast<int>(fractionals >> -one.e());
456  buffer[*length] = '0' + digit;
457  (*length)++;
458  fractionals &= one.f() - 1; // Modulo by one.
459  (*kappa)--;
460  if (fractionals < unsafe_interval.f()) {
461  return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
462  unsafe_interval.f(), fractionals, one.f(), unit);
463  }
464  }
465 }
466 
467 
468 
469 // Generates (at most) requested_digits of input number w.
470 // w is a floating-point number (DiyFp), consisting of a significand and an
471 // exponent. Its exponent is bounded by kMinimalTargetExponent and
472 // kMaximalTargetExponent.
473 // Hence -60 <= w.e() <= -32.
474 //
475 // Returns false if it fails, in which case the generated digits in the buffer
476 // should not be used.
477 // Preconditions:
478 // * w is correct up to 1 ulp (unit in the last place). That
479 // is, its error must be strictly less than a unit of its last digit.
480 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
481 //
482 // Postconditions: returns false if procedure fails.
483 // otherwise:
484 // * buffer is not null-terminated, but length contains the number of
485 // digits.
486 // * the representation in buffer is the most precise representation of
487 // requested_digits digits.
488 // * buffer contains at most requested_digits digits of w. If there are less
489 // than requested_digits digits then some trailing '0's have been removed.
490 // * kappa is such that
491 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
492 //
493 // Remark: This procedure takes into account the imprecision of its input
494 // numbers. If the precision is not enough to guarantee all the postconditions
495 // then false is returned. This usually happens rarely, but the failure-rate
496 // increases with higher requested_digits.
497 static bool DigitGenCounted(DiyFp w,
498  int requested_digits,
499  Vector<char> buffer,
500  int* length,
501  int* kappa) {
502  DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
503  DCHECK_GE(kMinimalTargetExponent, -60);
504  DCHECK_LE(kMaximalTargetExponent, -32);
505  // w is assumed to have an error less than 1 unit. Whenever w is scaled we
506  // also scale its error.
507  uint64_t w_error = 1;
508  // We cut the input number into two parts: the integral digits and the
509  // fractional digits. We don't emit any decimal separator, but adapt kappa
510  // instead. Example: instead of writing "1.2" we put "12" into the buffer and
511  // increase kappa by 1.
512  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
513  // Division by one is a shift.
514  uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
515  // Modulo by one is an and.
516  uint64_t fractionals = w.f() & (one.f() - 1);
517  uint32_t divisor;
518  int divisor_exponent;
519  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
520  &divisor, &divisor_exponent);
521  *kappa = divisor_exponent + 1;
522  *length = 0;
523 
524  // Loop invariant: buffer = w / 10^kappa (integer division)
525  // The invariant holds for the first iteration: kappa has been initialized
526  // with the divisor exponent + 1. And the divisor is the biggest power of ten
527  // that is smaller than 'integrals'.
528  while (*kappa > 0) {
529  int digit = integrals / divisor;
530  buffer[*length] = '0' + digit;
531  (*length)++;
532  requested_digits--;
533  integrals %= divisor;
534  (*kappa)--;
535  // Note that kappa now equals the exponent of the divisor and that the
536  // invariant thus holds again.
537  if (requested_digits == 0) break;
538  divisor /= 10;
539  }
540 
541  if (requested_digits == 0) {
542  uint64_t rest =
543  (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
544  return RoundWeedCounted(buffer, *length, rest,
545  static_cast<uint64_t>(divisor) << -one.e(), w_error,
546  kappa);
547  }
548 
549  // The integrals have been generated. We are at the point of the decimal
550  // separator. In the following loop we simply multiply the remaining digits by
551  // 10 and divide by one. We just need to pay attention to multiply associated
552  // data (the 'unit'), too.
553  // Note that the multiplication by 10 does not overflow, because w.e >= -60
554  // and thus one.e >= -60.
555  DCHECK_GE(one.e(), -60);
556  DCHECK(fractionals < one.f());
557  DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
558  while (requested_digits > 0 && fractionals > w_error) {
559  fractionals *= 10;
560  w_error *= 10;
561  // Integer division by one.
562  int digit = static_cast<int>(fractionals >> -one.e());
563  buffer[*length] = '0' + digit;
564  (*length)++;
565  requested_digits--;
566  fractionals &= one.f() - 1; // Modulo by one.
567  (*kappa)--;
568  }
569  if (requested_digits != 0) return false;
570  return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
571  kappa);
572 }
573 
574 
575 // Provides a decimal representation of v.
576 // Returns true if it succeeds, otherwise the result cannot be trusted.
577 // There will be *length digits inside the buffer (not null-terminated).
578 // If the function returns true then
579 // v == (double) (buffer * 10^decimal_exponent).
580 // The digits in the buffer are the shortest representation possible: no
581 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
582 // chosen even if the longer one would be closer to v.
583 // The last digit will be closest to the actual v. That is, even if several
584 // digits might correctly yield 'v' when read again, the closest will be
585 // computed.
586 static bool Grisu3(double v,
587  Vector<char> buffer,
588  int* length,
589  int* decimal_exponent) {
590  DiyFp w = Double(v).AsNormalizedDiyFp();
591  // boundary_minus and boundary_plus are the boundaries between v and its
592  // closest floating-point neighbors. Any number strictly between
593  // boundary_minus and boundary_plus will round to v when convert to a double.
594  // Grisu3 will never output representations that lie exactly on a boundary.
595  DiyFp boundary_minus, boundary_plus;
596  Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
597  DCHECK(boundary_plus.e() == w.e());
598  DiyFp ten_mk; // Cached power of ten: 10^-k
599  int mk; // -k
600  int ten_mk_minimal_binary_exponent =
601  kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
602  int ten_mk_maximal_binary_exponent =
603  kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
604  PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
605  ten_mk_minimal_binary_exponent,
606  ten_mk_maximal_binary_exponent,
607  &ten_mk, &mk);
608  DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() +
609  DiyFp::kSignificandSize) &&
610  (kMaximalTargetExponent >= w.e() + ten_mk.e() +
611  DiyFp::kSignificandSize));
612  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
613  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
614 
615  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
616  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
617  // off by a small amount.
618  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
619  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
620  // (f-1) * 2^e < w*10^k < (f+1) * 2^e
621  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
622  DCHECK(scaled_w.e() ==
623  boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
624  // In theory it would be possible to avoid some recomputations by computing
625  // the difference between w and boundary_minus/plus (a power of 2) and to
626  // compute scaled_boundary_minus/plus by subtracting/adding from
627  // scaled_w. However the code becomes much less readable and the speed
628  // enhancements are not terriffic.
629  DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
630  DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
631 
632  // DigitGen will generate the digits of scaled_w. Therefore we have
633  // v == (double) (scaled_w * 10^-mk).
634  // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
635  // integer than it will be updated. For instance if scaled_w == 1.23 then
636  // the buffer will be filled with "123" und the decimal_exponent will be
637  // decreased by 2.
638  int kappa;
639  bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
640  buffer, length, &kappa);
641  *decimal_exponent = -mk + kappa;
642  return result;
643 }
644 
645 
646 // The "counted" version of grisu3 (see above) only generates requested_digits
647 // number of digits. This version does not generate the shortest representation,
648 // and with enough requested digits 0.1 will at some point print as 0.9999999...
649 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
650 // therefore the rounding strategy for halfway cases is irrelevant.
651 static bool Grisu3Counted(double v,
652  int requested_digits,
653  Vector<char> buffer,
654  int* length,
655  int* decimal_exponent) {
656  DiyFp w = Double(v).AsNormalizedDiyFp();
657  DiyFp ten_mk; // Cached power of ten: 10^-k
658  int mk; // -k
659  int ten_mk_minimal_binary_exponent =
660  kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
661  int ten_mk_maximal_binary_exponent =
662  kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
663  PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
664  ten_mk_minimal_binary_exponent,
665  ten_mk_maximal_binary_exponent,
666  &ten_mk, &mk);
667  DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() +
668  DiyFp::kSignificandSize) &&
669  (kMaximalTargetExponent >= w.e() + ten_mk.e() +
670  DiyFp::kSignificandSize));
671  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
672  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
673 
674  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
675  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
676  // off by a small amount.
677  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
678  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
679  // (f-1) * 2^e < w*10^k < (f+1) * 2^e
680  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
681 
682  // We now have (double) (scaled_w * 10^-mk).
683  // DigitGen will generate the first requested_digits digits of scaled_w and
684  // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
685  // will not always be exactly the same since DigitGenCounted only produces a
686  // limited number of digits.)
687  int kappa;
688  bool result = DigitGenCounted(scaled_w, requested_digits,
689  buffer, length, &kappa);
690  *decimal_exponent = -mk + kappa;
691  return result;
692 }
693 
694 
695 bool FastDtoa(double v,
696  FastDtoaMode mode,
697  int requested_digits,
698  Vector<char> buffer,
699  int* length,
700  int* decimal_point) {
701  DCHECK_GT(v, 0);
702  DCHECK(!Double(v).IsSpecial());
703 
704  bool result = false;
705  int decimal_exponent = 0;
706  switch (mode) {
707  case FAST_DTOA_SHORTEST:
708  result = Grisu3(v, buffer, length, &decimal_exponent);
709  break;
710  case FAST_DTOA_PRECISION:
711  result = Grisu3Counted(v, requested_digits,
712  buffer, length, &decimal_exponent);
713  break;
714  default:
715  UNREACHABLE();
716  }
717  if (result) {
718  *decimal_point = *length + decimal_exponent;
719  buffer[*length] = '\0';
720  }
721  return result;
722 }
723 
724 } // namespace internal
725 } // namespace v8
Definition: libplatform.h:13