V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
cpu.cc
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/base/cpu.h"
6 
7 #if V8_LIBC_MSVCRT
8 #include <intrin.h> // __cpuid()
9 #endif
10 #if V8_OS_LINUX
11 #include <linux/auxvec.h> // AT_HWCAP
12 #endif
13 #if V8_GLIBC_PREREQ(2, 16)
14 #include <sys/auxv.h> // getauxval()
15 #endif
16 #if V8_OS_QNX
17 #include <sys/syspage.h> // cpuinfo
18 #endif
19 #if V8_OS_LINUX && V8_HOST_ARCH_PPC
20 #include <elf.h>
21 #endif
22 #if V8_OS_AIX
23 #include <sys/systemcfg.h> // _system_configuration
24 #ifndef POWER_8
25 #define POWER_8 0x10000
26 #endif
27 #ifndef POWER_9
28 #define POWER_9 0x20000
29 #endif
30 #endif
31 #if V8_OS_POSIX
32 #include <unistd.h> // sysconf()
33 #endif
34 
35 #include <ctype.h>
36 #include <limits.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <algorithm>
41 
42 #include "src/base/logging.h"
43 #if V8_OS_WIN
44 #include "src/base/win32-headers.h" // NOLINT
45 #endif
46 
47 namespace v8 {
48 namespace base {
49 
50 #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
51 
52 // Define __cpuid() for non-MSVC libraries.
53 #if !V8_LIBC_MSVCRT
54 
55 static V8_INLINE void __cpuid(int cpu_info[4], int info_type) {
56 // Clear ecx to align with __cpuid() of MSVC:
57 // https://msdn.microsoft.com/en-us/library/hskdteyh.aspx
58 #if defined(__i386__) && defined(__pic__)
59  // Make sure to preserve ebx, which contains the pointer
60  // to the GOT in case we're generating PIC.
61  __asm__ volatile(
62  "mov %%ebx, %%edi\n\t"
63  "cpuid\n\t"
64  "xchg %%edi, %%ebx\n\t"
65  : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
66  "=d"(cpu_info[3])
67  : "a"(info_type), "c"(0));
68 #else
69  __asm__ volatile("cpuid \n\t"
70  : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
71  "=d"(cpu_info[3])
72  : "a"(info_type), "c"(0));
73 #endif // defined(__i386__) && defined(__pic__)
74 }
75 
76 #endif // !V8_LIBC_MSVCRT
77 
78 #elif V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
79 
80 #if V8_OS_LINUX
81 
82 #if V8_HOST_ARCH_ARM
83 
84 // See <uapi/asm/hwcap.h> kernel header.
85 /*
86  * HWCAP flags - for elf_hwcap (in kernel) and AT_HWCAP
87  */
88 #define HWCAP_SWP (1 << 0)
89 #define HWCAP_HALF (1 << 1)
90 #define HWCAP_THUMB (1 << 2)
91 #define HWCAP_26BIT (1 << 3) /* Play it safe */
92 #define HWCAP_FAST_MULT (1 << 4)
93 #define HWCAP_FPA (1 << 5)
94 #define HWCAP_VFP (1 << 6)
95 #define HWCAP_EDSP (1 << 7)
96 #define HWCAP_JAVA (1 << 8)
97 #define HWCAP_IWMMXT (1 << 9)
98 #define HWCAP_CRUNCH (1 << 10)
99 #define HWCAP_THUMBEE (1 << 11)
100 #define HWCAP_NEON (1 << 12)
101 #define HWCAP_VFPv3 (1 << 13)
102 #define HWCAP_VFPv3D16 (1 << 14) /* also set for VFPv4-D16 */
103 #define HWCAP_TLS (1 << 15)
104 #define HWCAP_VFPv4 (1 << 16)
105 #define HWCAP_IDIVA (1 << 17)
106 #define HWCAP_IDIVT (1 << 18)
107 #define HWCAP_VFPD32 (1 << 19) /* set if VFP has 32 regs (not 16) */
108 #define HWCAP_IDIV (HWCAP_IDIVA | HWCAP_IDIVT)
109 #define HWCAP_LPAE (1 << 20)
110 
111 static uint32_t ReadELFHWCaps() {
112  uint32_t result = 0;
113 #if V8_GLIBC_PREREQ(2, 16)
114  result = static_cast<uint32_t>(getauxval(AT_HWCAP));
115 #else
116  // Read the ELF HWCAP flags by parsing /proc/self/auxv.
117  FILE* fp = fopen("/proc/self/auxv", "r");
118  if (fp != nullptr) {
119  struct { uint32_t tag; uint32_t value; } entry;
120  for (;;) {
121  size_t n = fread(&entry, sizeof(entry), 1, fp);
122  if (n == 0 || (entry.tag == 0 && entry.value == 0)) {
123  break;
124  }
125  if (entry.tag == AT_HWCAP) {
126  result = entry.value;
127  break;
128  }
129  }
130  fclose(fp);
131  }
132 #endif
133  return result;
134 }
135 
136 #endif // V8_HOST_ARCH_ARM
137 
138 #if V8_HOST_ARCH_MIPS
139 int __detect_fp64_mode(void) {
140  double result = 0;
141  // Bit representation of (double)1 is 0x3FF0000000000000.
142  __asm__ volatile(
143  ".set push\n\t"
144  ".set noreorder\n\t"
145  ".set oddspreg\n\t"
146  "lui $t0, 0x3FF0\n\t"
147  "ldc1 $f0, %0\n\t"
148  "mtc1 $t0, $f1\n\t"
149  "sdc1 $f0, %0\n\t"
150  ".set pop\n\t"
151  : "+m"(result)
152  :
153  : "t0", "$f0", "$f1", "memory");
154 
155  return !(result == 1);
156 }
157 
158 
159 int __detect_mips_arch_revision(void) {
160  // TODO(dusmil): Do the specific syscall as soon as it is implemented in mips
161  // kernel.
162  uint32_t result = 0;
163  __asm__ volatile(
164  "move $v0, $zero\n\t"
165  // Encoding for "addi $v0, $v0, 1" on non-r6,
166  // which is encoding for "bovc $v0, %v0, 1" on r6.
167  // Use machine code directly to avoid compilation errors with different
168  // toolchains and maintain compatibility.
169  ".word 0x20420001\n\t"
170  "sw $v0, %0\n\t"
171  : "=m"(result)
172  :
173  : "v0", "memory");
174  // Result is 0 on r6 architectures, 1 on other architecture revisions.
175  // Fall-back to the least common denominator which is mips32 revision 1.
176  return result ? 1 : 6;
177 }
178 #endif // V8_HOST_ARCH_MIPS
179 
180 // Extract the information exposed by the kernel via /proc/cpuinfo.
181 class CPUInfo final {
182  public:
183  CPUInfo() : datalen_(0) {
184  // Get the size of the cpuinfo file by reading it until the end. This is
185  // required because files under /proc do not always return a valid size
186  // when using fseek(0, SEEK_END) + ftell(). Nor can the be mmap()-ed.
187  static const char PATHNAME[] = "/proc/cpuinfo";
188  FILE* fp = fopen(PATHNAME, "r");
189  if (fp != nullptr) {
190  for (;;) {
191  char buffer[256];
192  size_t n = fread(buffer, 1, sizeof(buffer), fp);
193  if (n == 0) {
194  break;
195  }
196  datalen_ += n;
197  }
198  fclose(fp);
199  }
200 
201  // Read the contents of the cpuinfo file.
202  data_ = new char[datalen_ + 1];
203  fp = fopen(PATHNAME, "r");
204  if (fp != nullptr) {
205  for (size_t offset = 0; offset < datalen_; ) {
206  size_t n = fread(data_ + offset, 1, datalen_ - offset, fp);
207  if (n == 0) {
208  break;
209  }
210  offset += n;
211  }
212  fclose(fp);
213  }
214 
215  // Zero-terminate the data.
216  data_[datalen_] = '\0';
217  }
218 
219  ~CPUInfo() {
220  delete[] data_;
221  }
222 
223  // Extract the content of a the first occurrence of a given field in
224  // the content of the cpuinfo file and return it as a heap-allocated
225  // string that must be freed by the caller using delete[].
226  // Return nullptr if not found.
227  char* ExtractField(const char* field) const {
228  DCHECK_NOT_NULL(field);
229 
230  // Look for first field occurrence, and ensure it starts the line.
231  size_t fieldlen = strlen(field);
232  char* p = data_;
233  for (;;) {
234  p = strstr(p, field);
235  if (p == nullptr) {
236  return nullptr;
237  }
238  if (p == data_ || p[-1] == '\n') {
239  break;
240  }
241  p += fieldlen;
242  }
243 
244  // Skip to the first colon followed by a space.
245  p = strchr(p + fieldlen, ':');
246  if (p == nullptr || !isspace(p[1])) {
247  return nullptr;
248  }
249  p += 2;
250 
251  // Find the end of the line.
252  char* q = strchr(p, '\n');
253  if (q == nullptr) {
254  q = data_ + datalen_;
255  }
256 
257  // Copy the line into a heap-allocated buffer.
258  size_t len = q - p;
259  char* result = new char[len + 1];
260  if (result != nullptr) {
261  memcpy(result, p, len);
262  result[len] = '\0';
263  }
264  return result;
265  }
266 
267  private:
268  char* data_;
269  size_t datalen_;
270 };
271 
272 // Checks that a space-separated list of items contains one given 'item'.
273 static bool HasListItem(const char* list, const char* item) {
274  ssize_t item_len = strlen(item);
275  const char* p = list;
276  if (p != nullptr) {
277  while (*p != '\0') {
278  // Skip whitespace.
279  while (isspace(*p)) ++p;
280 
281  // Find end of current list item.
282  const char* q = p;
283  while (*q != '\0' && !isspace(*q)) ++q;
284 
285  if (item_len == q - p && memcmp(p, item, item_len) == 0) {
286  return true;
287  }
288 
289  // Skip to next item.
290  p = q;
291  }
292  }
293  return false;
294 }
295 
296 #endif // V8_OS_LINUX
297 
298 #endif // V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
299 
300 CPU::CPU()
301  : stepping_(0),
302  model_(0),
303  ext_model_(0),
304  family_(0),
305  ext_family_(0),
306  type_(0),
307  implementer_(0),
308  architecture_(0),
309  variant_(-1),
310  part_(0),
311  icache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
312  dcache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
313  has_fpu_(false),
314  has_cmov_(false),
315  has_sahf_(false),
316  has_mmx_(false),
317  has_sse_(false),
318  has_sse2_(false),
319  has_sse3_(false),
320  has_ssse3_(false),
321  has_sse41_(false),
322  has_sse42_(false),
323  is_atom_(false),
324  has_osxsave_(false),
325  has_avx_(false),
326  has_fma3_(false),
327  has_bmi1_(false),
328  has_bmi2_(false),
329  has_lzcnt_(false),
330  has_popcnt_(false),
331  has_idiva_(false),
332  has_neon_(false),
333  has_thumb2_(false),
334  has_vfp_(false),
335  has_vfp3_(false),
336  has_vfp3_d32_(false),
337  is_fp64_mode_(false),
338  has_non_stop_time_stamp_counter_(false),
339  has_msa_(false) {
340  memcpy(vendor_, "Unknown", 8);
341 #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
342  int cpu_info[4];
343 
344  // __cpuid with an InfoType argument of 0 returns the number of
345  // valid Ids in CPUInfo[0] and the CPU identification string in
346  // the other three array elements. The CPU identification string is
347  // not in linear order. The code below arranges the information
348  // in a human readable form. The human readable order is CPUInfo[1] |
349  // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
350  // before using memcpy to copy these three array elements to cpu_string.
351  __cpuid(cpu_info, 0);
352  unsigned num_ids = cpu_info[0];
353  std::swap(cpu_info[2], cpu_info[3]);
354  memcpy(vendor_, cpu_info + 1, 12);
355  vendor_[12] = '\0';
356 
357  // Interpret CPU feature information.
358  if (num_ids > 0) {
359  __cpuid(cpu_info, 1);
360  stepping_ = cpu_info[0] & 0xF;
361  model_ = ((cpu_info[0] >> 4) & 0xF) + ((cpu_info[0] >> 12) & 0xF0);
362  family_ = (cpu_info[0] >> 8) & 0xF;
363  type_ = (cpu_info[0] >> 12) & 0x3;
364  ext_model_ = (cpu_info[0] >> 16) & 0xF;
365  ext_family_ = (cpu_info[0] >> 20) & 0xFF;
366  has_fpu_ = (cpu_info[3] & 0x00000001) != 0;
367  has_cmov_ = (cpu_info[3] & 0x00008000) != 0;
368  has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
369  has_sse_ = (cpu_info[3] & 0x02000000) != 0;
370  has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
371  has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
372  has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
373  has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
374  has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
375  has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
376  has_osxsave_ = (cpu_info[2] & 0x08000000) != 0;
377  has_avx_ = (cpu_info[2] & 0x10000000) != 0;
378  has_fma3_ = (cpu_info[2] & 0x00001000) != 0;
379 
380  if (family_ == 0x6) {
381  switch (model_) {
382  case 0x1C: // SLT
383  case 0x26:
384  case 0x36:
385  case 0x27:
386  case 0x35:
387  case 0x37: // SLM
388  case 0x4A:
389  case 0x4D:
390  case 0x4C: // AMT
391  case 0x6E:
392  is_atom_ = true;
393  }
394  }
395  }
396 
397  // There are separate feature flags for VEX-encoded GPR instructions.
398  if (num_ids >= 7) {
399  __cpuid(cpu_info, 7);
400  has_bmi1_ = (cpu_info[1] & 0x00000008) != 0;
401  has_bmi2_ = (cpu_info[1] & 0x00000100) != 0;
402  }
403 
404  // Query extended IDs.
405  __cpuid(cpu_info, 0x80000000);
406  unsigned num_ext_ids = cpu_info[0];
407 
408  // Interpret extended CPU feature information.
409  if (num_ext_ids > 0x80000000) {
410  __cpuid(cpu_info, 0x80000001);
411  has_lzcnt_ = (cpu_info[2] & 0x00000020) != 0;
412  // SAHF must be probed in long mode.
413  has_sahf_ = (cpu_info[2] & 0x00000001) != 0;
414  }
415 
416  // Check if CPU has non stoppable time stamp counter.
417  const unsigned parameter_containing_non_stop_time_stamp_counter = 0x80000007;
418  if (num_ext_ids >= parameter_containing_non_stop_time_stamp_counter) {
419  __cpuid(cpu_info, parameter_containing_non_stop_time_stamp_counter);
420  has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
421  }
422 
423 #elif V8_HOST_ARCH_ARM
424 
425 #if V8_OS_LINUX
426 
427  CPUInfo cpu_info;
428 
429  // Extract implementor from the "CPU implementer" field.
430  char* implementer = cpu_info.ExtractField("CPU implementer");
431  if (implementer != nullptr) {
432  char* end;
433  implementer_ = strtol(implementer, &end, 0);
434  if (end == implementer) {
435  implementer_ = 0;
436  }
437  delete[] implementer;
438  }
439 
440  char* variant = cpu_info.ExtractField("CPU variant");
441  if (variant != nullptr) {
442  char* end;
443  variant_ = strtol(variant, &end, 0);
444  if (end == variant) {
445  variant_ = -1;
446  }
447  delete[] variant;
448  }
449 
450  // Extract part number from the "CPU part" field.
451  char* part = cpu_info.ExtractField("CPU part");
452  if (part != nullptr) {
453  char* end;
454  part_ = strtol(part, &end, 0);
455  if (end == part) {
456  part_ = 0;
457  }
458  delete[] part;
459  }
460 
461  // Extract architecture from the "CPU Architecture" field.
462  // The list is well-known, unlike the the output of
463  // the 'Processor' field which can vary greatly.
464  // See the definition of the 'proc_arch' array in
465  // $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
466  // same file.
467  char* architecture = cpu_info.ExtractField("CPU architecture");
468  if (architecture != nullptr) {
469  char* end;
470  architecture_ = strtol(architecture, &end, 10);
471  if (end == architecture) {
472  // Kernels older than 3.18 report "CPU architecture: AArch64" on ARMv8.
473  if (strcmp(architecture, "AArch64") == 0) {
474  architecture_ = 8;
475  } else {
476  architecture_ = 0;
477  }
478  }
479  delete[] architecture;
480 
481  // Unfortunately, it seems that certain ARMv6-based CPUs
482  // report an incorrect architecture number of 7!
483  //
484  // See http://code.google.com/p/android/issues/detail?id=10812
485  //
486  // We try to correct this by looking at the 'elf_platform'
487  // field reported by the 'Processor' field, which is of the
488  // form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
489  // an ARMv6-one. For example, the Raspberry Pi is one popular
490  // ARMv6 device that reports architecture 7.
491  if (architecture_ == 7) {
492  char* processor = cpu_info.ExtractField("Processor");
493  if (HasListItem(processor, "(v6l)")) {
494  architecture_ = 6;
495  }
496  delete[] processor;
497  }
498 
499  // elf_platform moved to the model name field in Linux v3.8.
500  if (architecture_ == 7) {
501  char* processor = cpu_info.ExtractField("model name");
502  if (HasListItem(processor, "(v6l)")) {
503  architecture_ = 6;
504  }
505  delete[] processor;
506  }
507  }
508 
509  // Try to extract the list of CPU features from ELF hwcaps.
510  uint32_t hwcaps = ReadELFHWCaps();
511  if (hwcaps != 0) {
512  has_idiva_ = (hwcaps & HWCAP_IDIVA) != 0;
513  has_neon_ = (hwcaps & HWCAP_NEON) != 0;
514  has_vfp_ = (hwcaps & HWCAP_VFP) != 0;
515  has_vfp3_ = (hwcaps & (HWCAP_VFPv3 | HWCAP_VFPv3D16 | HWCAP_VFPv4)) != 0;
516  has_vfp3_d32_ = (has_vfp3_ && ((hwcaps & HWCAP_VFPv3D16) == 0 ||
517  (hwcaps & HWCAP_VFPD32) != 0));
518  } else {
519  // Try to fallback to "Features" CPUInfo field.
520  char* features = cpu_info.ExtractField("Features");
521  has_idiva_ = HasListItem(features, "idiva");
522  has_neon_ = HasListItem(features, "neon");
523  has_thumb2_ = HasListItem(features, "thumb2");
524  has_vfp_ = HasListItem(features, "vfp");
525  if (HasListItem(features, "vfpv3d16")) {
526  has_vfp3_ = true;
527  } else if (HasListItem(features, "vfpv3")) {
528  has_vfp3_ = true;
529  has_vfp3_d32_ = true;
530  }
531  delete[] features;
532  }
533 
534  // Some old kernels will report vfp not vfpv3. Here we make an attempt
535  // to detect vfpv3 by checking for vfp *and* neon, since neon is only
536  // available on architectures with vfpv3. Checking neon on its own is
537  // not enough as it is possible to have neon without vfp.
538  if (has_vfp_ && has_neon_) {
539  has_vfp3_ = true;
540  }
541 
542  // VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
543  if (architecture_ < 7 && has_vfp3_) {
544  architecture_ = 7;
545  }
546 
547  // ARMv7 implies Thumb2.
548  if (architecture_ >= 7) {
549  has_thumb2_ = true;
550  }
551 
552  // The earliest architecture with Thumb2 is ARMv6T2.
553  if (has_thumb2_ && architecture_ < 6) {
554  architecture_ = 6;
555  }
556 
557  // We don't support any FPUs other than VFP.
558  has_fpu_ = has_vfp_;
559 
560 #elif V8_OS_QNX
561 
562  uint32_t cpu_flags = SYSPAGE_ENTRY(cpuinfo)->flags;
563  if (cpu_flags & ARM_CPU_FLAG_V7) {
564  architecture_ = 7;
565  has_thumb2_ = true;
566  } else if (cpu_flags & ARM_CPU_FLAG_V6) {
567  architecture_ = 6;
568  // QNX doesn't say if Thumb2 is available.
569  // Assume false for the architectures older than ARMv7.
570  }
571  DCHECK_GE(architecture_, 6);
572  has_fpu_ = (cpu_flags & CPU_FLAG_FPU) != 0;
573  has_vfp_ = has_fpu_;
574  if (cpu_flags & ARM_CPU_FLAG_NEON) {
575  has_neon_ = true;
576  has_vfp3_ = has_vfp_;
577 #ifdef ARM_CPU_FLAG_VFP_D32
578  has_vfp3_d32_ = (cpu_flags & ARM_CPU_FLAG_VFP_D32) != 0;
579 #endif
580  }
581  has_idiva_ = (cpu_flags & ARM_CPU_FLAG_IDIV) != 0;
582 
583 #endif // V8_OS_LINUX
584 
585 #elif V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
586 
587  // Simple detection of FPU at runtime for Linux.
588  // It is based on /proc/cpuinfo, which reveals hardware configuration
589  // to user-space applications. According to MIPS (early 2010), no similar
590  // facility is universally available on the MIPS architectures,
591  // so it's up to individual OSes to provide such.
592  CPUInfo cpu_info;
593  char* cpu_model = cpu_info.ExtractField("cpu model");
594  has_fpu_ = HasListItem(cpu_model, "FPU");
595  char* ASEs = cpu_info.ExtractField("ASEs implemented");
596  has_msa_ = HasListItem(ASEs, "msa");
597  delete[] cpu_model;
598  delete[] ASEs;
599 #ifdef V8_HOST_ARCH_MIPS
600  is_fp64_mode_ = __detect_fp64_mode();
601  architecture_ = __detect_mips_arch_revision();
602 #endif
603 
604 #elif V8_HOST_ARCH_ARM64
605 // Implementer, variant and part are currently unused under ARM64.
606 
607 #elif V8_HOST_ARCH_PPC
608 
609 #ifndef USE_SIMULATOR
610 #if V8_OS_LINUX
611  // Read processor info from /proc/self/auxv.
612  char* auxv_cpu_type = nullptr;
613  FILE* fp = fopen("/proc/self/auxv", "r");
614  if (fp != nullptr) {
615 #if V8_TARGET_ARCH_PPC64
616  Elf64_auxv_t entry;
617 #else
618  Elf32_auxv_t entry;
619 #endif
620  for (;;) {
621  size_t n = fread(&entry, sizeof(entry), 1, fp);
622  if (n == 0 || entry.a_type == AT_NULL) {
623  break;
624  }
625  switch (entry.a_type) {
626  case AT_PLATFORM:
627  auxv_cpu_type = reinterpret_cast<char*>(entry.a_un.a_val);
628  break;
629  case AT_ICACHEBSIZE:
630  icache_line_size_ = entry.a_un.a_val;
631  break;
632  case AT_DCACHEBSIZE:
633  dcache_line_size_ = entry.a_un.a_val;
634  break;
635  }
636  }
637  fclose(fp);
638  }
639 
640  part_ = -1;
641  if (auxv_cpu_type) {
642  if (strcmp(auxv_cpu_type, "power9") == 0) {
643  part_ = PPC_POWER9;
644  } else if (strcmp(auxv_cpu_type, "power8") == 0) {
645  part_ = PPC_POWER8;
646  } else if (strcmp(auxv_cpu_type, "power7") == 0) {
647  part_ = PPC_POWER7;
648  } else if (strcmp(auxv_cpu_type, "power6") == 0) {
649  part_ = PPC_POWER6;
650  } else if (strcmp(auxv_cpu_type, "power5") == 0) {
651  part_ = PPC_POWER5;
652  } else if (strcmp(auxv_cpu_type, "ppc970") == 0) {
653  part_ = PPC_G5;
654  } else if (strcmp(auxv_cpu_type, "ppc7450") == 0) {
655  part_ = PPC_G4;
656  } else if (strcmp(auxv_cpu_type, "pa6t") == 0) {
657  part_ = PPC_PA6T;
658  }
659  }
660 
661 #elif V8_OS_AIX
662  switch (_system_configuration.implementation) {
663  case POWER_9:
664  part_ = PPC_POWER9;
665  break;
666  case POWER_8:
667  part_ = PPC_POWER8;
668  break;
669  case POWER_7:
670  part_ = PPC_POWER7;
671  break;
672  case POWER_6:
673  part_ = PPC_POWER6;
674  break;
675  case POWER_5:
676  part_ = PPC_POWER5;
677  break;
678  }
679 #endif // V8_OS_AIX
680 #endif // !USE_SIMULATOR
681 #endif // V8_HOST_ARCH_PPC
682 }
683 
684 } // namespace base
685 } // namespace v8
Definition: libplatform.h:13