V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
conversions-inl.h
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_CONVERSIONS_INL_H_
6 #define V8_CONVERSIONS_INL_H_
7 
8 #include <float.h> // Required for DBL_MAX and on Win32 for finite()
9 #include <limits.h> // Required for INT_MAX etc.
10 #include <stdarg.h>
11 #include <cmath>
12 #include "src/globals.h" // Required for V8_INFINITY
13 
14 // ----------------------------------------------------------------------------
15 // Extra POSIX/ANSI functions for Win32/MSVC.
16 
17 #include "src/base/bits.h"
18 #include "src/base/platform/platform.h"
19 #include "src/conversions.h"
20 #include "src/double.h"
21 #include "src/objects-inl.h"
22 
23 namespace v8 {
24 namespace internal {
25 
26 // The fast double-to-unsigned-int conversion routine does not guarantee
27 // rounding towards zero, or any reasonable value if the argument is larger
28 // than what fits in an unsigned 32-bit integer.
29 inline unsigned int FastD2UI(double x) {
30  // There is no unsigned version of lrint, so there is no fast path
31  // in this function as there is in FastD2I. Using lrint doesn't work
32  // for values of 2^31 and above.
33 
34  // Convert "small enough" doubles to uint32_t by fixing the 32
35  // least significant non-fractional bits in the low 32 bits of the
36  // double, and reading them from there.
37  const double k2Pow52 = 4503599627370496.0;
38  bool negative = x < 0;
39  if (negative) {
40  x = -x;
41  }
42  if (x < k2Pow52) {
43  x += k2Pow52;
44  uint32_t result;
45 #ifndef V8_TARGET_BIG_ENDIAN
46  void* mantissa_ptr = reinterpret_cast<void*>(&x);
47 #else
48  void* mantissa_ptr =
49  reinterpret_cast<void*>(reinterpret_cast<Address>(&x) + kInt32Size);
50 #endif
51  // Copy least significant 32 bits of mantissa.
52  memcpy(&result, mantissa_ptr, sizeof(result));
53  return negative ? ~result + 1 : result;
54  }
55  // Large number (outside uint32 range), Infinity or NaN.
56  return 0x80000000u; // Return integer indefinite.
57 }
58 
59 
60 inline float DoubleToFloat32(double x) {
61  // TODO(yangguo): This static_cast is implementation-defined behaviour in C++,
62  // so we may need to do the conversion manually instead to match the spec.
63  volatile float f = static_cast<float>(x);
64  return f;
65 }
66 
67 
68 inline double DoubleToInteger(double x) {
69  if (std::isnan(x)) return 0;
70  if (!std::isfinite(x) || x == 0) return x;
71  return (x >= 0) ? std::floor(x) : std::ceil(x);
72 }
73 
74 
75 int32_t DoubleToInt32(double x) {
76  if ((std::isfinite(x)) && (x <= INT_MAX) && (x >= INT_MIN)) {
77  int32_t i = static_cast<int32_t>(x);
78  if (FastI2D(i) == x) return i;
79  }
80  Double d(x);
81  int exponent = d.Exponent();
82  if (exponent < 0) {
83  if (exponent <= -Double::kSignificandSize) return 0;
84  return d.Sign() * static_cast<int32_t>(d.Significand() >> -exponent);
85  } else {
86  if (exponent > 31) return 0;
87  return d.Sign() * static_cast<int32_t>(d.Significand() << exponent);
88  }
89 }
90 
91 bool DoubleToSmiInteger(double value, int* smi_int_value) {
92  if (!IsSmiDouble(value)) return false;
93  *smi_int_value = FastD2I(value);
94  DCHECK(Smi::IsValid(*smi_int_value));
95  return true;
96 }
97 
98 bool IsSmiDouble(double value) {
99  return value >= Smi::kMinValue && value <= Smi::kMaxValue &&
100  !IsMinusZero(value) && value == FastI2D(FastD2I(value));
101 }
102 
103 
104 bool IsInt32Double(double value) {
105  return value >= kMinInt && value <= kMaxInt && !IsMinusZero(value) &&
106  value == FastI2D(FastD2I(value));
107 }
108 
109 
110 bool IsUint32Double(double value) {
111  return !IsMinusZero(value) && value >= 0 && value <= kMaxUInt32 &&
112  value == FastUI2D(FastD2UI(value));
113 }
114 
115 bool DoubleToUint32IfEqualToSelf(double value, uint32_t* uint32_value) {
116  const double k2Pow52 = 4503599627370496.0;
117  const uint32_t kValidTopBits = 0x43300000;
118  const uint64_t kBottomBitMask = V8_2PART_UINT64_C(0x00000000, FFFFFFFF);
119 
120  // Add 2^52 to the double, to place valid uint32 values in the low-significant
121  // bits of the exponent, by effectively setting the (implicit) top bit of the
122  // significand. Note that this addition also normalises 0.0 and -0.0.
123  double shifted_value = value + k2Pow52;
124 
125  // At this point, a valid uint32 valued double will be represented as:
126  //
127  // sign = 0
128  // exponent = 52
129  // significand = 1. 00...00 <value>
130  // implicit^ ^^^^^^^ 32 bits
131  // ^^^^^^^^^^^^^^^ 52 bits
132  //
133  // Therefore, we can first check the top 32 bits to make sure that the sign,
134  // exponent and remaining significand bits are valid, and only then check the
135  // value in the bottom 32 bits.
136 
137  uint64_t result = bit_cast<uint64_t>(shifted_value);
138  if ((result >> 32) == kValidTopBits) {
139  *uint32_value = result & kBottomBitMask;
140  return FastUI2D(result & kBottomBitMask) == value;
141  }
142  return false;
143 }
144 
145 int32_t NumberToInt32(Object* number) {
146  if (number->IsSmi()) return Smi::ToInt(number);
147  return DoubleToInt32(number->Number());
148 }
149 
150 uint32_t NumberToUint32(Object* number) {
151  if (number->IsSmi()) return Smi::ToInt(number);
152  return DoubleToUint32(number->Number());
153 }
154 
155 uint32_t PositiveNumberToUint32(Object* number) {
156  if (number->IsSmi()) {
157  int value = Smi::ToInt(number);
158  if (value <= 0) return 0;
159  return value;
160  }
161  DCHECK(number->IsHeapNumber());
162  double value = number->Number();
163  // Catch all values smaller than 1 and use the double-negation trick for NANs.
164  if (!(value >= 1)) return 0;
165  uint32_t max = std::numeric_limits<uint32_t>::max();
166  if (value < max) return static_cast<uint32_t>(value);
167  return max;
168 }
169 
170 int64_t NumberToInt64(Object* number) {
171  if (number->IsSmi()) return Smi::ToInt(number);
172  double d = number->Number();
173  if (std::isnan(d)) return 0;
174  if (d >= static_cast<double>(std::numeric_limits<int64_t>::max())) {
175  return std::numeric_limits<int64_t>::max();
176  }
177  if (d <= static_cast<double>(std::numeric_limits<int64_t>::min())) {
178  return std::numeric_limits<int64_t>::min();
179  }
180  return static_cast<int64_t>(d);
181 }
182 
183 uint64_t PositiveNumberToUint64(Object* number) {
184  if (number->IsSmi()) {
185  int value = Smi::ToInt(number);
186  if (value <= 0) return 0;
187  return value;
188  }
189  DCHECK(number->IsHeapNumber());
190  double value = number->Number();
191  // Catch all values smaller than 1 and use the double-negation trick for NANs.
192  if (!(value >= 1)) return 0;
193  uint64_t max = std::numeric_limits<uint64_t>::max();
194  if (value < max) return static_cast<uint64_t>(value);
195  return max;
196 }
197 
198 bool TryNumberToSize(Object* number, size_t* result) {
199  // Do not create handles in this function! Don't use SealHandleScope because
200  // the function can be used concurrently.
201  if (number->IsSmi()) {
202  int value = Smi::ToInt(number);
203  DCHECK(static_cast<unsigned>(Smi::kMaxValue) <=
204  std::numeric_limits<size_t>::max());
205  if (value >= 0) {
206  *result = static_cast<size_t>(value);
207  return true;
208  }
209  return false;
210  } else {
211  DCHECK(number->IsHeapNumber());
212  double value = HeapNumber::cast(number)->value();
213  // If value is compared directly to the limit, the limit will be
214  // casted to a double and could end up as limit + 1,
215  // because a double might not have enough mantissa bits for it.
216  // So we might as well cast the limit first, and use < instead of <=.
217  double maxSize = static_cast<double>(std::numeric_limits<size_t>::max());
218  if (value >= 0 && value < maxSize) {
219  *result = static_cast<size_t>(value);
220  return true;
221  } else {
222  return false;
223  }
224  }
225 }
226 
227 size_t NumberToSize(Object* number) {
228  size_t result = 0;
229  bool is_valid = TryNumberToSize(number, &result);
230  CHECK(is_valid);
231  return result;
232 }
233 
234 
235 uint32_t DoubleToUint32(double x) {
236  return static_cast<uint32_t>(DoubleToInt32(x));
237 }
238 
239 } // namespace internal
240 } // namespace v8
241 
242 #endif // V8_CONVERSIONS_INL_H_
STL namespace.
Definition: libplatform.h:13