V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
constants-mips64.h
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_MIPS64_CONSTANTS_MIPS64_H_
6 #define V8_MIPS64_CONSTANTS_MIPS64_H_
7 
8 #include "src/base/logging.h"
9 #include "src/base/macros.h"
10 #include "src/globals.h"
11 
12 // UNIMPLEMENTED_ macro for MIPS.
13 #ifdef DEBUG
14 #define UNIMPLEMENTED_MIPS() \
15  v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
16  __FILE__, __LINE__, __func__)
17 #else
18 #define UNIMPLEMENTED_MIPS()
19 #endif
20 
21 #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
22 
23 enum ArchVariants {
24  kMips64r2,
25  kMips64r6
26 };
27 
28 
29 #ifdef _MIPS_ARCH_MIPS64R2
30  static const ArchVariants kArchVariant = kMips64r2;
31 #elif _MIPS_ARCH_MIPS64R6
32  static const ArchVariants kArchVariant = kMips64r6;
33 #else
34  static const ArchVariants kArchVariant = kMips64r2;
35 #endif
36 
37 
38  enum Endianness { kLittle, kBig };
39 
40 #if defined(V8_TARGET_LITTLE_ENDIAN)
41  static const Endianness kArchEndian = kLittle;
42 #elif defined(V8_TARGET_BIG_ENDIAN)
43  static const Endianness kArchEndian = kBig;
44 #else
45 #error Unknown endianness
46 #endif
47 
48 
49 // TODO(plind): consider renaming these ...
50 #if(defined(__mips_hard_float) && __mips_hard_float != 0)
51 // Use floating-point coprocessor instructions. This flag is raised when
52 // -mhard-float is passed to the compiler.
53 const bool IsMipsSoftFloatABI = false;
54 #elif(defined(__mips_soft_float) && __mips_soft_float != 0)
55 // This flag is raised when -msoft-float is passed to the compiler.
56 // Although FPU is a base requirement for v8, soft-float ABI is used
57 // on soft-float systems with FPU kernel emulation.
58 const bool IsMipsSoftFloatABI = true;
59 #else
60 const bool IsMipsSoftFloatABI = true;
61 #endif
62 
63 #if defined(V8_TARGET_LITTLE_ENDIAN)
64 const uint32_t kMipsLwrOffset = 0;
65 const uint32_t kMipsLwlOffset = 3;
66 const uint32_t kMipsSwrOffset = 0;
67 const uint32_t kMipsSwlOffset = 3;
68 const uint32_t kMipsLdrOffset = 0;
69 const uint32_t kMipsLdlOffset = 7;
70 const uint32_t kMipsSdrOffset = 0;
71 const uint32_t kMipsSdlOffset = 7;
72 #elif defined(V8_TARGET_BIG_ENDIAN)
73 const uint32_t kMipsLwrOffset = 3;
74 const uint32_t kMipsLwlOffset = 0;
75 const uint32_t kMipsSwrOffset = 3;
76 const uint32_t kMipsSwlOffset = 0;
77 const uint32_t kMipsLdrOffset = 7;
78 const uint32_t kMipsLdlOffset = 0;
79 const uint32_t kMipsSdrOffset = 7;
80 const uint32_t kMipsSdlOffset = 0;
81 #else
82 #error Unknown endianness
83 #endif
84 
85 #if defined(V8_TARGET_LITTLE_ENDIAN)
86 const uint32_t kLeastSignificantByteInInt32Offset = 0;
87 const uint32_t kLessSignificantWordInDoublewordOffset = 0;
88 #elif defined(V8_TARGET_BIG_ENDIAN)
89 const uint32_t kLeastSignificantByteInInt32Offset = 3;
90 const uint32_t kLessSignificantWordInDoublewordOffset = 4;
91 #else
92 #error Unknown endianness
93 #endif
94 
95 #ifndef __STDC_FORMAT_MACROS
96 #define __STDC_FORMAT_MACROS
97 #endif
98 #include <inttypes.h>
99 
100 // Defines constants and accessor classes to assemble, disassemble and
101 // simulate MIPS32 instructions.
102 //
103 // See: MIPS32 Architecture For Programmers
104 // Volume II: The MIPS32 Instruction Set
105 // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
106 
107 namespace v8 {
108 namespace internal {
109 
110 // TODO(sigurds): Change this value once we use relative jumps.
111 constexpr size_t kMaxPCRelativeCodeRangeInMB = 0;
112 
113 // -----------------------------------------------------------------------------
114 // Registers and FPURegisters.
115 
116 // Number of general purpose registers.
117 const int kNumRegisters = 32;
118 const int kInvalidRegister = -1;
119 
120 // Number of registers with HI, LO, and pc.
121 const int kNumSimuRegisters = 35;
122 
123 // In the simulator, the PC register is simulated as the 34th register.
124 const int kPCRegister = 34;
125 
126 // Number coprocessor registers.
127 const int kNumFPURegisters = 32;
128 const int kInvalidFPURegister = -1;
129 
130 // Number of MSA registers
131 const int kNumMSARegisters = 32;
132 const int kInvalidMSARegister = -1;
133 
134 const int kInvalidMSAControlRegister = -1;
135 const int kMSAIRRegister = 0;
136 const int kMSACSRRegister = 1;
137 const int kMSARegSize = 128;
138 const int kMSALanesByte = kMSARegSize / 8;
139 const int kMSALanesHalf = kMSARegSize / 16;
140 const int kMSALanesWord = kMSARegSize / 32;
141 const int kMSALanesDword = kMSARegSize / 64;
142 
143 // FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
144 const int kFCSRRegister = 31;
145 const int kInvalidFPUControlRegister = -1;
146 const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1u << 31) - 1;
147 const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1u << 31);
148 const uint64_t kFPU64InvalidResult =
149  static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
150 const int64_t kFPU64InvalidResultNegative =
151  static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
152 
153 // FCSR constants.
154 const uint32_t kFCSRInexactFlagBit = 2;
155 const uint32_t kFCSRUnderflowFlagBit = 3;
156 const uint32_t kFCSROverflowFlagBit = 4;
157 const uint32_t kFCSRDivideByZeroFlagBit = 5;
158 const uint32_t kFCSRInvalidOpFlagBit = 6;
159 const uint32_t kFCSRNaN2008FlagBit = 18;
160 
161 const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
162 const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
163 const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
164 const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
165 const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
166 const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
167 
168 const uint32_t kFCSRFlagMask =
169  kFCSRInexactFlagMask |
170  kFCSRUnderflowFlagMask |
171  kFCSROverflowFlagMask |
172  kFCSRDivideByZeroFlagMask |
173  kFCSRInvalidOpFlagMask;
174 
175 const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
176 
177 // 'pref' instruction hints
178 const int32_t kPrefHintLoad = 0;
179 const int32_t kPrefHintStore = 1;
180 const int32_t kPrefHintLoadStreamed = 4;
181 const int32_t kPrefHintStoreStreamed = 5;
182 const int32_t kPrefHintLoadRetained = 6;
183 const int32_t kPrefHintStoreRetained = 7;
184 const int32_t kPrefHintWritebackInvalidate = 25;
185 const int32_t kPrefHintPrepareForStore = 30;
186 
187 // Actual value of root register is offset from the root array's start
188 // to take advantage of negative displacement values.
189 // TODO(sigurds): Choose best value.
190 constexpr int kRootRegisterBias = 256;
191 
192 // Helper functions for converting between register numbers and names.
193 class Registers {
194  public:
195  // Return the name of the register.
196  static const char* Name(int reg);
197 
198  // Lookup the register number for the name provided.
199  static int Number(const char* name);
200 
201  struct RegisterAlias {
202  int reg;
203  const char* name;
204  };
205 
206  static const int64_t kMaxValue = 0x7fffffffffffffffl;
207  static const int64_t kMinValue = 0x8000000000000000l;
208 
209  private:
210  static const char* names_[kNumSimuRegisters];
211  static const RegisterAlias aliases_[];
212 };
213 
214 // Helper functions for converting between register numbers and names.
215 class FPURegisters {
216  public:
217  // Return the name of the register.
218  static const char* Name(int reg);
219 
220  // Lookup the register number for the name provided.
221  static int Number(const char* name);
222 
223  struct RegisterAlias {
224  int creg;
225  const char* name;
226  };
227 
228  private:
229  static const char* names_[kNumFPURegisters];
230  static const RegisterAlias aliases_[];
231 };
232 
233 // Helper functions for converting between register numbers and names.
234 class MSARegisters {
235  public:
236  // Return the name of the register.
237  static const char* Name(int reg);
238 
239  // Lookup the register number for the name provided.
240  static int Number(const char* name);
241 
242  struct RegisterAlias {
243  int creg;
244  const char* name;
245  };
246 
247  private:
248  static const char* names_[kNumMSARegisters];
249  static const RegisterAlias aliases_[];
250 };
251 
252 // -----------------------------------------------------------------------------
253 // Instructions encoding constants.
254 
255 // On MIPS all instructions are 32 bits.
256 typedef int32_t Instr;
257 
258 // Special Software Interrupt codes when used in the presence of the MIPS
259 // simulator.
260 enum SoftwareInterruptCodes {
261  // Transition to C code.
262  call_rt_redirected = 0xfffff
263 };
264 
265 // On MIPS Simulator breakpoints can have different codes:
266 // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
267 // the simulator will run through them and print the registers.
268 // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
269 // instructions (see Assembler::stop()).
270 // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
271 // debugger.
272 const uint32_t kMaxWatchpointCode = 31;
273 const uint32_t kMaxStopCode = 127;
274 STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
275 
276 
277 // ----- Fields offset and length.
278 const int kOpcodeShift = 26;
279 const int kOpcodeBits = 6;
280 const int kRsShift = 21;
281 const int kRsBits = 5;
282 const int kRtShift = 16;
283 const int kRtBits = 5;
284 const int kRdShift = 11;
285 const int kRdBits = 5;
286 const int kSaShift = 6;
287 const int kSaBits = 5;
288 const int kLsaSaBits = 2;
289 const int kFunctionShift = 0;
290 const int kFunctionBits = 6;
291 const int kLuiShift = 16;
292 const int kBp2Shift = 6;
293 const int kBp2Bits = 2;
294 const int kBp3Shift = 6;
295 const int kBp3Bits = 3;
296 const int kBaseShift = 21;
297 const int kBaseBits = 5;
298 const int kBit6Shift = 6;
299 const int kBit6Bits = 1;
300 
301 const int kImm9Shift = 7;
302 const int kImm9Bits = 9;
303 const int kImm16Shift = 0;
304 const int kImm16Bits = 16;
305 const int kImm18Shift = 0;
306 const int kImm18Bits = 18;
307 const int kImm19Shift = 0;
308 const int kImm19Bits = 19;
309 const int kImm21Shift = 0;
310 const int kImm21Bits = 21;
311 const int kImm26Shift = 0;
312 const int kImm26Bits = 26;
313 const int kImm28Shift = 0;
314 const int kImm28Bits = 28;
315 const int kImm32Shift = 0;
316 const int kImm32Bits = 32;
317 const int kMsaImm8Shift = 16;
318 const int kMsaImm8Bits = 8;
319 const int kMsaImm5Shift = 16;
320 const int kMsaImm5Bits = 5;
321 const int kMsaImm10Shift = 11;
322 const int kMsaImm10Bits = 10;
323 const int kMsaImmMI10Shift = 16;
324 const int kMsaImmMI10Bits = 10;
325 
326 // In branches and jumps immediate fields point to words, not bytes,
327 // and are therefore shifted by 2.
328 const int kImmFieldShift = 2;
329 
330 const int kFrBits = 5;
331 const int kFrShift = 21;
332 const int kFsShift = 11;
333 const int kFsBits = 5;
334 const int kFtShift = 16;
335 const int kFtBits = 5;
336 const int kFdShift = 6;
337 const int kFdBits = 5;
338 const int kFCccShift = 8;
339 const int kFCccBits = 3;
340 const int kFBccShift = 18;
341 const int kFBccBits = 3;
342 const int kFBtrueShift = 16;
343 const int kFBtrueBits = 1;
344 const int kWtBits = 5;
345 const int kWtShift = 16;
346 const int kWsBits = 5;
347 const int kWsShift = 11;
348 const int kWdBits = 5;
349 const int kWdShift = 6;
350 
351 // ----- Miscellaneous useful masks.
352 // Instruction bit masks.
353 const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
354 const int kImm9Mask = ((1 << kImm9Bits) - 1) << kImm9Shift;
355 const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
356 const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
357 const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
358 const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
359 const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
360 const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
361 const int kImm5Mask = ((1 << 5) - 1);
362 const int kImm8Mask = ((1 << 8) - 1);
363 const int kImm10Mask = ((1 << 10) - 1);
364 const int kMsaI5I10Mask = ((7U << 23) | ((1 << 6) - 1));
365 const int kMsaI8Mask = ((3U << 24) | ((1 << 6) - 1));
366 const int kMsaI5Mask = ((7U << 23) | ((1 << 6) - 1));
367 const int kMsaMI10Mask = (15U << 2);
368 const int kMsaBITMask = ((7U << 23) | ((1 << 6) - 1));
369 const int kMsaELMMask = (15U << 22);
370 const int kMsaLongerELMMask = kMsaELMMask | (63U << 16);
371 const int kMsa3RMask = ((7U << 23) | ((1 << 6) - 1));
372 const int kMsa3RFMask = ((15U << 22) | ((1 << 6) - 1));
373 const int kMsaVECMask = (23U << 21);
374 const int kMsa2RMask = (7U << 18);
375 const int kMsa2RFMask = (15U << 17);
376 const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
377 const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
378 const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
379 const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
380 const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
381 // Misc masks.
382 const int kHiMaskOf32 = 0xffff << 16; // Only to be used with 32-bit values
383 const int kLoMaskOf32 = 0xffff;
384 const int kSignMaskOf32 = 0x80000000; // Only to be used with 32-bit values
385 const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
386 const int64_t kTop16MaskOf64 = (int64_t)0xffff << 48;
387 const int64_t kHigher16MaskOf64 = (int64_t)0xffff << 32;
388 const int64_t kUpper16MaskOf64 = (int64_t)0xffff << 16;
389 const int32_t kJalRawMark = 0x00000000;
390 const int32_t kJRawMark = 0xf0000000;
391 const int32_t kJumpRawMask = 0xf0000000;
392 
393 // ----- MIPS Opcodes and Function Fields.
394 // We use this presentation to stay close to the table representation in
395 // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
396 enum Opcode : uint32_t {
397  SPECIAL = 0U << kOpcodeShift,
398  REGIMM = 1U << kOpcodeShift,
399 
400  J = ((0U << 3) + 2) << kOpcodeShift,
401  JAL = ((0U << 3) + 3) << kOpcodeShift,
402  BEQ = ((0U << 3) + 4) << kOpcodeShift,
403  BNE = ((0U << 3) + 5) << kOpcodeShift,
404  BLEZ = ((0U << 3) + 6) << kOpcodeShift,
405  BGTZ = ((0U << 3) + 7) << kOpcodeShift,
406 
407  ADDI = ((1U << 3) + 0) << kOpcodeShift,
408  ADDIU = ((1U << 3) + 1) << kOpcodeShift,
409  SLTI = ((1U << 3) + 2) << kOpcodeShift,
410  SLTIU = ((1U << 3) + 3) << kOpcodeShift,
411  ANDI = ((1U << 3) + 4) << kOpcodeShift,
412  ORI = ((1U << 3) + 5) << kOpcodeShift,
413  XORI = ((1U << 3) + 6) << kOpcodeShift,
414  LUI = ((1U << 3) + 7) << kOpcodeShift, // LUI/AUI family.
415  DAUI = ((3U << 3) + 5) << kOpcodeShift,
416 
417  BEQC = ((2U << 3) + 0) << kOpcodeShift,
418  COP1 = ((2U << 3) + 1) << kOpcodeShift, // Coprocessor 1 class.
419  BEQL = ((2U << 3) + 4) << kOpcodeShift,
420  BNEL = ((2U << 3) + 5) << kOpcodeShift,
421  BLEZL = ((2U << 3) + 6) << kOpcodeShift,
422  BGTZL = ((2U << 3) + 7) << kOpcodeShift,
423 
424  DADDI = ((3U << 3) + 0) << kOpcodeShift, // This is also BNEC.
425  DADDIU = ((3U << 3) + 1) << kOpcodeShift,
426  LDL = ((3U << 3) + 2) << kOpcodeShift,
427  LDR = ((3U << 3) + 3) << kOpcodeShift,
428  SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
429  MSA = ((3U << 3) + 6) << kOpcodeShift,
430  SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
431 
432  LB = ((4U << 3) + 0) << kOpcodeShift,
433  LH = ((4U << 3) + 1) << kOpcodeShift,
434  LWL = ((4U << 3) + 2) << kOpcodeShift,
435  LW = ((4U << 3) + 3) << kOpcodeShift,
436  LBU = ((4U << 3) + 4) << kOpcodeShift,
437  LHU = ((4U << 3) + 5) << kOpcodeShift,
438  LWR = ((4U << 3) + 6) << kOpcodeShift,
439  LWU = ((4U << 3) + 7) << kOpcodeShift,
440 
441  SB = ((5U << 3) + 0) << kOpcodeShift,
442  SH = ((5U << 3) + 1) << kOpcodeShift,
443  SWL = ((5U << 3) + 2) << kOpcodeShift,
444  SW = ((5U << 3) + 3) << kOpcodeShift,
445  SDL = ((5U << 3) + 4) << kOpcodeShift,
446  SDR = ((5U << 3) + 5) << kOpcodeShift,
447  SWR = ((5U << 3) + 6) << kOpcodeShift,
448 
449  LL = ((6U << 3) + 0) << kOpcodeShift,
450  LWC1 = ((6U << 3) + 1) << kOpcodeShift,
451  BC = ((6U << 3) + 2) << kOpcodeShift,
452  LLD = ((6U << 3) + 4) << kOpcodeShift,
453  LDC1 = ((6U << 3) + 5) << kOpcodeShift,
454  POP66 = ((6U << 3) + 6) << kOpcodeShift,
455  LD = ((6U << 3) + 7) << kOpcodeShift,
456 
457  PREF = ((6U << 3) + 3) << kOpcodeShift,
458 
459  SC = ((7U << 3) + 0) << kOpcodeShift,
460  SWC1 = ((7U << 3) + 1) << kOpcodeShift,
461  BALC = ((7U << 3) + 2) << kOpcodeShift,
462  PCREL = ((7U << 3) + 3) << kOpcodeShift,
463  SCD = ((7U << 3) + 4) << kOpcodeShift,
464  SDC1 = ((7U << 3) + 5) << kOpcodeShift,
465  POP76 = ((7U << 3) + 6) << kOpcodeShift,
466  SD = ((7U << 3) + 7) << kOpcodeShift,
467 
468  COP1X = ((1U << 4) + 3) << kOpcodeShift,
469 
470  // New r6 instruction.
471  POP06 = BLEZ, // bgeuc/bleuc, blezalc, bgezalc
472  POP07 = BGTZ, // bltuc/bgtuc, bgtzalc, bltzalc
473  POP10 = ADDI, // beqzalc, bovc, beqc
474  POP26 = BLEZL, // bgezc, blezc, bgec/blec
475  POP27 = BGTZL, // bgtzc, bltzc, bltc/bgtc
476  POP30 = DADDI, // bnezalc, bnvc, bnec
477 };
478 
479 enum SecondaryField : uint32_t {
480  // SPECIAL Encoding of Function Field.
481  SLL = ((0U << 3) + 0),
482  MOVCI = ((0U << 3) + 1),
483  SRL = ((0U << 3) + 2),
484  SRA = ((0U << 3) + 3),
485  SLLV = ((0U << 3) + 4),
486  LSA = ((0U << 3) + 5),
487  SRLV = ((0U << 3) + 6),
488  SRAV = ((0U << 3) + 7),
489 
490  JR = ((1U << 3) + 0),
491  JALR = ((1U << 3) + 1),
492  MOVZ = ((1U << 3) + 2),
493  MOVN = ((1U << 3) + 3),
494  BREAK = ((1U << 3) + 5),
495  SYNC = ((1U << 3) + 7),
496 
497  MFHI = ((2U << 3) + 0),
498  CLZ_R6 = ((2U << 3) + 0),
499  CLO_R6 = ((2U << 3) + 1),
500  MFLO = ((2U << 3) + 2),
501  DCLZ_R6 = ((2U << 3) + 2),
502  DCLO_R6 = ((2U << 3) + 3),
503  DSLLV = ((2U << 3) + 4),
504  DLSA = ((2U << 3) + 5),
505  DSRLV = ((2U << 3) + 6),
506  DSRAV = ((2U << 3) + 7),
507 
508  MULT = ((3U << 3) + 0),
509  MULTU = ((3U << 3) + 1),
510  DIV = ((3U << 3) + 2),
511  DIVU = ((3U << 3) + 3),
512  DMULT = ((3U << 3) + 4),
513  DMULTU = ((3U << 3) + 5),
514  DDIV = ((3U << 3) + 6),
515  DDIVU = ((3U << 3) + 7),
516 
517  ADD = ((4U << 3) + 0),
518  ADDU = ((4U << 3) + 1),
519  SUB = ((4U << 3) + 2),
520  SUBU = ((4U << 3) + 3),
521  AND = ((4U << 3) + 4),
522  OR = ((4U << 3) + 5),
523  XOR = ((4U << 3) + 6),
524  NOR = ((4U << 3) + 7),
525 
526  SLT = ((5U << 3) + 2),
527  SLTU = ((5U << 3) + 3),
528  DADD = ((5U << 3) + 4),
529  DADDU = ((5U << 3) + 5),
530  DSUB = ((5U << 3) + 6),
531  DSUBU = ((5U << 3) + 7),
532 
533  TGE = ((6U << 3) + 0),
534  TGEU = ((6U << 3) + 1),
535  TLT = ((6U << 3) + 2),
536  TLTU = ((6U << 3) + 3),
537  TEQ = ((6U << 3) + 4),
538  SELEQZ_S = ((6U << 3) + 5),
539  TNE = ((6U << 3) + 6),
540  SELNEZ_S = ((6U << 3) + 7),
541 
542  DSLL = ((7U << 3) + 0),
543  DSRL = ((7U << 3) + 2),
544  DSRA = ((7U << 3) + 3),
545  DSLL32 = ((7U << 3) + 4),
546  DSRL32 = ((7U << 3) + 6),
547  DSRA32 = ((7U << 3) + 7),
548 
549  // Multiply integers in r6.
550  MUL_MUH = ((3U << 3) + 0), // MUL, MUH.
551  MUL_MUH_U = ((3U << 3) + 1), // MUL_U, MUH_U.
552  D_MUL_MUH = ((7U << 2) + 0), // DMUL, DMUH.
553  D_MUL_MUH_U = ((7U << 2) + 1), // DMUL_U, DMUH_U.
554  RINT = ((3U << 3) + 2),
555 
556  MUL_OP = ((0U << 3) + 2),
557  MUH_OP = ((0U << 3) + 3),
558  DIV_OP = ((0U << 3) + 2),
559  MOD_OP = ((0U << 3) + 3),
560 
561  DIV_MOD = ((3U << 3) + 2),
562  DIV_MOD_U = ((3U << 3) + 3),
563  D_DIV_MOD = ((3U << 3) + 6),
564  D_DIV_MOD_U = ((3U << 3) + 7),
565 
566  // drotr in special4?
567 
568  // SPECIAL2 Encoding of Function Field.
569  MUL = ((0U << 3) + 2),
570  CLZ = ((4U << 3) + 0),
571  CLO = ((4U << 3) + 1),
572  DCLZ = ((4U << 3) + 4),
573  DCLO = ((4U << 3) + 5),
574 
575  // SPECIAL3 Encoding of Function Field.
576  EXT = ((0U << 3) + 0),
577  DEXTM = ((0U << 3) + 1),
578  DEXTU = ((0U << 3) + 2),
579  DEXT = ((0U << 3) + 3),
580  INS = ((0U << 3) + 4),
581  DINSM = ((0U << 3) + 5),
582  DINSU = ((0U << 3) + 6),
583  DINS = ((0U << 3) + 7),
584 
585  BSHFL = ((4U << 3) + 0),
586  DBSHFL = ((4U << 3) + 4),
587  SC_R6 = ((4U << 3) + 6),
588  SCD_R6 = ((4U << 3) + 7),
589  LL_R6 = ((6U << 3) + 6),
590  LLD_R6 = ((6U << 3) + 7),
591 
592  // SPECIAL3 Encoding of sa Field.
593  BITSWAP = ((0U << 3) + 0),
594  ALIGN = ((0U << 3) + 2),
595  WSBH = ((0U << 3) + 2),
596  SEB = ((2U << 3) + 0),
597  SEH = ((3U << 3) + 0),
598 
599  DBITSWAP = ((0U << 3) + 0),
600  DALIGN = ((0U << 3) + 1),
601  DBITSWAP_SA = ((0U << 3) + 0) << kSaShift,
602  DSBH = ((0U << 3) + 2),
603  DSHD = ((0U << 3) + 5),
604 
605  // REGIMM encoding of rt Field.
606  BLTZ = ((0U << 3) + 0) << 16,
607  BGEZ = ((0U << 3) + 1) << 16,
608  BLTZAL = ((2U << 3) + 0) << 16,
609  BGEZAL = ((2U << 3) + 1) << 16,
610  BGEZALL = ((2U << 3) + 3) << 16,
611  DAHI = ((0U << 3) + 6) << 16,
612  DATI = ((3U << 3) + 6) << 16,
613 
614  // COP1 Encoding of rs Field.
615  MFC1 = ((0U << 3) + 0) << 21,
616  DMFC1 = ((0U << 3) + 1) << 21,
617  CFC1 = ((0U << 3) + 2) << 21,
618  MFHC1 = ((0U << 3) + 3) << 21,
619  MTC1 = ((0U << 3) + 4) << 21,
620  DMTC1 = ((0U << 3) + 5) << 21,
621  CTC1 = ((0U << 3) + 6) << 21,
622  MTHC1 = ((0U << 3) + 7) << 21,
623  BC1 = ((1U << 3) + 0) << 21,
624  S = ((2U << 3) + 0) << 21,
625  D = ((2U << 3) + 1) << 21,
626  W = ((2U << 3) + 4) << 21,
627  L = ((2U << 3) + 5) << 21,
628  PS = ((2U << 3) + 6) << 21,
629  // COP1 Encoding of Function Field When rs=S.
630 
631  ADD_S = ((0U << 3) + 0),
632  SUB_S = ((0U << 3) + 1),
633  MUL_S = ((0U << 3) + 2),
634  DIV_S = ((0U << 3) + 3),
635  ABS_S = ((0U << 3) + 5),
636  SQRT_S = ((0U << 3) + 4),
637  MOV_S = ((0U << 3) + 6),
638  NEG_S = ((0U << 3) + 7),
639  ROUND_L_S = ((1U << 3) + 0),
640  TRUNC_L_S = ((1U << 3) + 1),
641  CEIL_L_S = ((1U << 3) + 2),
642  FLOOR_L_S = ((1U << 3) + 3),
643  ROUND_W_S = ((1U << 3) + 4),
644  TRUNC_W_S = ((1U << 3) + 5),
645  CEIL_W_S = ((1U << 3) + 6),
646  FLOOR_W_S = ((1U << 3) + 7),
647  RECIP_S = ((2U << 3) + 5),
648  RSQRT_S = ((2U << 3) + 6),
649  MADDF_S = ((3U << 3) + 0),
650  MSUBF_S = ((3U << 3) + 1),
651  CLASS_S = ((3U << 3) + 3),
652  CVT_D_S = ((4U << 3) + 1),
653  CVT_W_S = ((4U << 3) + 4),
654  CVT_L_S = ((4U << 3) + 5),
655  CVT_PS_S = ((4U << 3) + 6),
656  // COP1 Encoding of Function Field When rs=D.
657  ADD_D = ((0U << 3) + 0),
658  SUB_D = ((0U << 3) + 1),
659  MUL_D = ((0U << 3) + 2),
660  DIV_D = ((0U << 3) + 3),
661  SQRT_D = ((0U << 3) + 4),
662  ABS_D = ((0U << 3) + 5),
663  MOV_D = ((0U << 3) + 6),
664  NEG_D = ((0U << 3) + 7),
665  ROUND_L_D = ((1U << 3) + 0),
666  TRUNC_L_D = ((1U << 3) + 1),
667  CEIL_L_D = ((1U << 3) + 2),
668  FLOOR_L_D = ((1U << 3) + 3),
669  ROUND_W_D = ((1U << 3) + 4),
670  TRUNC_W_D = ((1U << 3) + 5),
671  CEIL_W_D = ((1U << 3) + 6),
672  FLOOR_W_D = ((1U << 3) + 7),
673  RECIP_D = ((2U << 3) + 5),
674  RSQRT_D = ((2U << 3) + 6),
675  MADDF_D = ((3U << 3) + 0),
676  MSUBF_D = ((3U << 3) + 1),
677  CLASS_D = ((3U << 3) + 3),
678  MIN = ((3U << 3) + 4),
679  MINA = ((3U << 3) + 5),
680  MAX = ((3U << 3) + 6),
681  MAXA = ((3U << 3) + 7),
682  CVT_S_D = ((4U << 3) + 0),
683  CVT_W_D = ((4U << 3) + 4),
684  CVT_L_D = ((4U << 3) + 5),
685  C_F_D = ((6U << 3) + 0),
686  C_UN_D = ((6U << 3) + 1),
687  C_EQ_D = ((6U << 3) + 2),
688  C_UEQ_D = ((6U << 3) + 3),
689  C_OLT_D = ((6U << 3) + 4),
690  C_ULT_D = ((6U << 3) + 5),
691  C_OLE_D = ((6U << 3) + 6),
692  C_ULE_D = ((6U << 3) + 7),
693 
694  // COP1 Encoding of Function Field When rs=W or L.
695  CVT_S_W = ((4U << 3) + 0),
696  CVT_D_W = ((4U << 3) + 1),
697  CVT_S_L = ((4U << 3) + 0),
698  CVT_D_L = ((4U << 3) + 1),
699  BC1EQZ = ((2U << 2) + 1) << 21,
700  BC1NEZ = ((3U << 2) + 1) << 21,
701  // COP1 CMP positive predicates Bit 5..4 = 00.
702  CMP_AF = ((0U << 3) + 0),
703  CMP_UN = ((0U << 3) + 1),
704  CMP_EQ = ((0U << 3) + 2),
705  CMP_UEQ = ((0U << 3) + 3),
706  CMP_LT = ((0U << 3) + 4),
707  CMP_ULT = ((0U << 3) + 5),
708  CMP_LE = ((0U << 3) + 6),
709  CMP_ULE = ((0U << 3) + 7),
710  CMP_SAF = ((1U << 3) + 0),
711  CMP_SUN = ((1U << 3) + 1),
712  CMP_SEQ = ((1U << 3) + 2),
713  CMP_SUEQ = ((1U << 3) + 3),
714  CMP_SSLT = ((1U << 3) + 4),
715  CMP_SSULT = ((1U << 3) + 5),
716  CMP_SLE = ((1U << 3) + 6),
717  CMP_SULE = ((1U << 3) + 7),
718  // COP1 CMP negative predicates Bit 5..4 = 01.
719  CMP_AT = ((2U << 3) + 0), // Reserved, not implemented.
720  CMP_OR = ((2U << 3) + 1),
721  CMP_UNE = ((2U << 3) + 2),
722  CMP_NE = ((2U << 3) + 3),
723  CMP_UGE = ((2U << 3) + 4), // Reserved, not implemented.
724  CMP_OGE = ((2U << 3) + 5), // Reserved, not implemented.
725  CMP_UGT = ((2U << 3) + 6), // Reserved, not implemented.
726  CMP_OGT = ((2U << 3) + 7), // Reserved, not implemented.
727  CMP_SAT = ((3U << 3) + 0), // Reserved, not implemented.
728  CMP_SOR = ((3U << 3) + 1),
729  CMP_SUNE = ((3U << 3) + 2),
730  CMP_SNE = ((3U << 3) + 3),
731  CMP_SUGE = ((3U << 3) + 4), // Reserved, not implemented.
732  CMP_SOGE = ((3U << 3) + 5), // Reserved, not implemented.
733  CMP_SUGT = ((3U << 3) + 6), // Reserved, not implemented.
734  CMP_SOGT = ((3U << 3) + 7), // Reserved, not implemented.
735 
736  SEL = ((2U << 3) + 0),
737  MOVF = ((2U << 3) + 1), // Function field for MOVT.fmt and MOVF.fmt
738  MOVZ_C = ((2U << 3) + 2), // COP1 on FPR registers.
739  MOVN_C = ((2U << 3) + 3), // COP1 on FPR registers.
740  SELEQZ_C = ((2U << 3) + 4), // COP1 on FPR registers.
741  SELNEZ_C = ((2U << 3) + 7), // COP1 on FPR registers.
742 
743  // COP1 Encoding of Function Field When rs=PS.
744 
745  // COP1X Encoding of Function Field.
746  MADD_S = ((4U << 3) + 0),
747  MADD_D = ((4U << 3) + 1),
748  MSUB_S = ((5U << 3) + 0),
749  MSUB_D = ((5U << 3) + 1),
750 
751  // PCREL Encoding of rt Field.
752  ADDIUPC = ((0U << 2) + 0),
753  LWPC = ((0U << 2) + 1),
754  LWUPC = ((0U << 2) + 2),
755  LDPC = ((0U << 3) + 6),
756  // reserved ((1U << 3) + 6),
757  AUIPC = ((3U << 3) + 6),
758  ALUIPC = ((3U << 3) + 7),
759 
760  // POP66 Encoding of rs Field.
761  JIC = ((0U << 5) + 0),
762 
763  // POP76 Encoding of rs Field.
764  JIALC = ((0U << 5) + 0),
765 
766  // COP1 Encoding of rs Field for MSA Branch Instructions
767  BZ_V = (((1U << 3) + 3) << kRsShift),
768  BNZ_V = (((1U << 3) + 7) << kRsShift),
769  BZ_B = (((3U << 3) + 0) << kRsShift),
770  BZ_H = (((3U << 3) + 1) << kRsShift),
771  BZ_W = (((3U << 3) + 2) << kRsShift),
772  BZ_D = (((3U << 3) + 3) << kRsShift),
773  BNZ_B = (((3U << 3) + 4) << kRsShift),
774  BNZ_H = (((3U << 3) + 5) << kRsShift),
775  BNZ_W = (((3U << 3) + 6) << kRsShift),
776  BNZ_D = (((3U << 3) + 7) << kRsShift),
777 
778  // MSA: Operation Field for MI10 Instruction Formats
779  MSA_LD = (8U << 2),
780  MSA_ST = (9U << 2),
781  LD_B = ((8U << 2) + 0),
782  LD_H = ((8U << 2) + 1),
783  LD_W = ((8U << 2) + 2),
784  LD_D = ((8U << 2) + 3),
785  ST_B = ((9U << 2) + 0),
786  ST_H = ((9U << 2) + 1),
787  ST_W = ((9U << 2) + 2),
788  ST_D = ((9U << 2) + 3),
789 
790  // MSA: Operation Field for I5 Instruction Format
791  ADDVI = ((0U << 23) + 6),
792  SUBVI = ((1U << 23) + 6),
793  MAXI_S = ((2U << 23) + 6),
794  MAXI_U = ((3U << 23) + 6),
795  MINI_S = ((4U << 23) + 6),
796  MINI_U = ((5U << 23) + 6),
797  CEQI = ((0U << 23) + 7),
798  CLTI_S = ((2U << 23) + 7),
799  CLTI_U = ((3U << 23) + 7),
800  CLEI_S = ((4U << 23) + 7),
801  CLEI_U = ((5U << 23) + 7),
802  LDI = ((6U << 23) + 7), // I10 instruction format
803  I5_DF_b = (0U << 21),
804  I5_DF_h = (1U << 21),
805  I5_DF_w = (2U << 21),
806  I5_DF_d = (3U << 21),
807 
808  // MSA: Operation Field for I8 Instruction Format
809  ANDI_B = ((0U << 24) + 0),
810  ORI_B = ((1U << 24) + 0),
811  NORI_B = ((2U << 24) + 0),
812  XORI_B = ((3U << 24) + 0),
813  BMNZI_B = ((0U << 24) + 1),
814  BMZI_B = ((1U << 24) + 1),
815  BSELI_B = ((2U << 24) + 1),
816  SHF_B = ((0U << 24) + 2),
817  SHF_H = ((1U << 24) + 2),
818  SHF_W = ((2U << 24) + 2),
819 
820  MSA_VEC_2R_2RF_MINOR = ((3U << 3) + 6),
821 
822  // MSA: Operation Field for VEC Instruction Formats
823  AND_V = (((0U << 2) + 0) << 21),
824  OR_V = (((0U << 2) + 1) << 21),
825  NOR_V = (((0U << 2) + 2) << 21),
826  XOR_V = (((0U << 2) + 3) << 21),
827  BMNZ_V = (((1U << 2) + 0) << 21),
828  BMZ_V = (((1U << 2) + 1) << 21),
829  BSEL_V = (((1U << 2) + 2) << 21),
830 
831  // MSA: Operation Field for 2R Instruction Formats
832  MSA_2R_FORMAT = (((6U << 2) + 0) << 21),
833  FILL = (0U << 18),
834  PCNT = (1U << 18),
835  NLOC = (2U << 18),
836  NLZC = (3U << 18),
837  MSA_2R_DF_b = (0U << 16),
838  MSA_2R_DF_h = (1U << 16),
839  MSA_2R_DF_w = (2U << 16),
840  MSA_2R_DF_d = (3U << 16),
841 
842  // MSA: Operation Field for 2RF Instruction Formats
843  MSA_2RF_FORMAT = (((6U << 2) + 1) << 21),
844  FCLASS = (0U << 17),
845  FTRUNC_S = (1U << 17),
846  FTRUNC_U = (2U << 17),
847  FSQRT = (3U << 17),
848  FRSQRT = (4U << 17),
849  FRCP = (5U << 17),
850  FRINT = (6U << 17),
851  FLOG2 = (7U << 17),
852  FEXUPL = (8U << 17),
853  FEXUPR = (9U << 17),
854  FFQL = (10U << 17),
855  FFQR = (11U << 17),
856  FTINT_S = (12U << 17),
857  FTINT_U = (13U << 17),
858  FFINT_S = (14U << 17),
859  FFINT_U = (15U << 17),
860  MSA_2RF_DF_w = (0U << 16),
861  MSA_2RF_DF_d = (1U << 16),
862 
863  // MSA: Operation Field for 3R Instruction Format
864  SLL_MSA = ((0U << 23) + 13),
865  SRA_MSA = ((1U << 23) + 13),
866  SRL_MSA = ((2U << 23) + 13),
867  BCLR = ((3U << 23) + 13),
868  BSET = ((4U << 23) + 13),
869  BNEG = ((5U << 23) + 13),
870  BINSL = ((6U << 23) + 13),
871  BINSR = ((7U << 23) + 13),
872  ADDV = ((0U << 23) + 14),
873  SUBV = ((1U << 23) + 14),
874  MAX_S = ((2U << 23) + 14),
875  MAX_U = ((3U << 23) + 14),
876  MIN_S = ((4U << 23) + 14),
877  MIN_U = ((5U << 23) + 14),
878  MAX_A = ((6U << 23) + 14),
879  MIN_A = ((7U << 23) + 14),
880  CEQ = ((0U << 23) + 15),
881  CLT_S = ((2U << 23) + 15),
882  CLT_U = ((3U << 23) + 15),
883  CLE_S = ((4U << 23) + 15),
884  CLE_U = ((5U << 23) + 15),
885  ADD_A = ((0U << 23) + 16),
886  ADDS_A = ((1U << 23) + 16),
887  ADDS_S = ((2U << 23) + 16),
888  ADDS_U = ((3U << 23) + 16),
889  AVE_S = ((4U << 23) + 16),
890  AVE_U = ((5U << 23) + 16),
891  AVER_S = ((6U << 23) + 16),
892  AVER_U = ((7U << 23) + 16),
893  SUBS_S = ((0U << 23) + 17),
894  SUBS_U = ((1U << 23) + 17),
895  SUBSUS_U = ((2U << 23) + 17),
896  SUBSUU_S = ((3U << 23) + 17),
897  ASUB_S = ((4U << 23) + 17),
898  ASUB_U = ((5U << 23) + 17),
899  MULV = ((0U << 23) + 18),
900  MADDV = ((1U << 23) + 18),
901  MSUBV = ((2U << 23) + 18),
902  DIV_S_MSA = ((4U << 23) + 18),
903  DIV_U = ((5U << 23) + 18),
904  MOD_S = ((6U << 23) + 18),
905  MOD_U = ((7U << 23) + 18),
906  DOTP_S = ((0U << 23) + 19),
907  DOTP_U = ((1U << 23) + 19),
908  DPADD_S = ((2U << 23) + 19),
909  DPADD_U = ((3U << 23) + 19),
910  DPSUB_S = ((4U << 23) + 19),
911  DPSUB_U = ((5U << 23) + 19),
912  SLD = ((0U << 23) + 20),
913  SPLAT = ((1U << 23) + 20),
914  PCKEV = ((2U << 23) + 20),
915  PCKOD = ((3U << 23) + 20),
916  ILVL = ((4U << 23) + 20),
917  ILVR = ((5U << 23) + 20),
918  ILVEV = ((6U << 23) + 20),
919  ILVOD = ((7U << 23) + 20),
920  VSHF = ((0U << 23) + 21),
921  SRAR = ((1U << 23) + 21),
922  SRLR = ((2U << 23) + 21),
923  HADD_S = ((4U << 23) + 21),
924  HADD_U = ((5U << 23) + 21),
925  HSUB_S = ((6U << 23) + 21),
926  HSUB_U = ((7U << 23) + 21),
927  MSA_3R_DF_b = (0U << 21),
928  MSA_3R_DF_h = (1U << 21),
929  MSA_3R_DF_w = (2U << 21),
930  MSA_3R_DF_d = (3U << 21),
931 
932  // MSA: Operation Field for 3RF Instruction Format
933  FCAF = ((0U << 22) + 26),
934  FCUN = ((1U << 22) + 26),
935  FCEQ = ((2U << 22) + 26),
936  FCUEQ = ((3U << 22) + 26),
937  FCLT = ((4U << 22) + 26),
938  FCULT = ((5U << 22) + 26),
939  FCLE = ((6U << 22) + 26),
940  FCULE = ((7U << 22) + 26),
941  FSAF = ((8U << 22) + 26),
942  FSUN = ((9U << 22) + 26),
943  FSEQ = ((10U << 22) + 26),
944  FSUEQ = ((11U << 22) + 26),
945  FSLT = ((12U << 22) + 26),
946  FSULT = ((13U << 22) + 26),
947  FSLE = ((14U << 22) + 26),
948  FSULE = ((15U << 22) + 26),
949  FADD = ((0U << 22) + 27),
950  FSUB = ((1U << 22) + 27),
951  FMUL = ((2U << 22) + 27),
952  FDIV = ((3U << 22) + 27),
953  FMADD = ((4U << 22) + 27),
954  FMSUB = ((5U << 22) + 27),
955  FEXP2 = ((7U << 22) + 27),
956  FEXDO = ((8U << 22) + 27),
957  FTQ = ((10U << 22) + 27),
958  FMIN = ((12U << 22) + 27),
959  FMIN_A = ((13U << 22) + 27),
960  FMAX = ((14U << 22) + 27),
961  FMAX_A = ((15U << 22) + 27),
962  FCOR = ((1U << 22) + 28),
963  FCUNE = ((2U << 22) + 28),
964  FCNE = ((3U << 22) + 28),
965  MUL_Q = ((4U << 22) + 28),
966  MADD_Q = ((5U << 22) + 28),
967  MSUB_Q = ((6U << 22) + 28),
968  FSOR = ((9U << 22) + 28),
969  FSUNE = ((10U << 22) + 28),
970  FSNE = ((11U << 22) + 28),
971  MULR_Q = ((12U << 22) + 28),
972  MADDR_Q = ((13U << 22) + 28),
973  MSUBR_Q = ((14U << 22) + 28),
974 
975  // MSA: Operation Field for ELM Instruction Format
976  MSA_ELM_MINOR = ((3U << 3) + 1),
977  SLDI = (0U << 22),
978  CTCMSA = ((0U << 22) | (62U << 16)),
979  SPLATI = (1U << 22),
980  CFCMSA = ((1U << 22) | (62U << 16)),
981  COPY_S = (2U << 22),
982  MOVE_V = ((2U << 22) | (62U << 16)),
983  COPY_U = (3U << 22),
984  INSERT = (4U << 22),
985  INSVE = (5U << 22),
986  ELM_DF_B = ((0U << 4) << 16),
987  ELM_DF_H = ((4U << 3) << 16),
988  ELM_DF_W = ((12U << 2) << 16),
989  ELM_DF_D = ((28U << 1) << 16),
990 
991  // MSA: Operation Field for BIT Instruction Format
992  SLLI = ((0U << 23) + 9),
993  SRAI = ((1U << 23) + 9),
994  SRLI = ((2U << 23) + 9),
995  BCLRI = ((3U << 23) + 9),
996  BSETI = ((4U << 23) + 9),
997  BNEGI = ((5U << 23) + 9),
998  BINSLI = ((6U << 23) + 9),
999  BINSRI = ((7U << 23) + 9),
1000  SAT_S = ((0U << 23) + 10),
1001  SAT_U = ((1U << 23) + 10),
1002  SRARI = ((2U << 23) + 10),
1003  SRLRI = ((3U << 23) + 10),
1004  BIT_DF_b = ((14U << 3) << 16),
1005  BIT_DF_h = ((6U << 4) << 16),
1006  BIT_DF_w = ((2U << 5) << 16),
1007  BIT_DF_d = ((0U << 6) << 16),
1008 
1009  nullptrSF = 0U
1010 };
1011 
1012 enum MSAMinorOpcode : uint32_t {
1013  kMsaMinorUndefined = 0,
1014  kMsaMinorI8,
1015  kMsaMinorI5,
1016  kMsaMinorI10,
1017  kMsaMinorBIT,
1018  kMsaMinor3R,
1019  kMsaMinor3RF,
1020  kMsaMinorELM,
1021  kMsaMinorVEC,
1022  kMsaMinor2R,
1023  kMsaMinor2RF,
1024  kMsaMinorMI10
1025 };
1026 
1027 // ----- Emulated conditions.
1028 // On MIPS we use this enum to abstract from conditional branch instructions.
1029 // The 'U' prefix is used to specify unsigned comparisons.
1030 // Opposite conditions must be paired as odd/even numbers
1031 // because 'NegateCondition' function flips LSB to negate condition.
1032 enum Condition {
1033  // Any value < 0 is considered no_condition.
1034  kNoCondition = -1,
1035  overflow = 0,
1036  no_overflow = 1,
1037  Uless = 2,
1038  Ugreater_equal = 3,
1039  Uless_equal = 4,
1040  Ugreater = 5,
1041  equal = 6,
1042  not_equal = 7, // Unordered or Not Equal.
1043  negative = 8,
1044  positive = 9,
1045  parity_even = 10,
1046  parity_odd = 11,
1047  less = 12,
1048  greater_equal = 13,
1049  less_equal = 14,
1050  greater = 15,
1051  ueq = 16, // Unordered or Equal.
1052  ogl = 17, // Ordered and Not Equal.
1053  cc_always = 18,
1054 
1055  // Aliases.
1056  carry = Uless,
1057  not_carry = Ugreater_equal,
1058  zero = equal,
1059  eq = equal,
1060  not_zero = not_equal,
1061  ne = not_equal,
1062  nz = not_equal,
1063  sign = negative,
1064  not_sign = positive,
1065  mi = negative,
1066  pl = positive,
1067  hi = Ugreater,
1068  ls = Uless_equal,
1069  ge = greater_equal,
1070  lt = less,
1071  gt = greater,
1072  le = less_equal,
1073  hs = Ugreater_equal,
1074  lo = Uless,
1075  al = cc_always,
1076  ult = Uless,
1077  uge = Ugreater_equal,
1078  ule = Uless_equal,
1079  ugt = Ugreater,
1080  cc_default = kNoCondition
1081 };
1082 
1083 
1084 // Returns the equivalent of !cc.
1085 // Negation of the default kNoCondition (-1) results in a non-default
1086 // no_condition value (-2). As long as tests for no_condition check
1087 // for condition < 0, this will work as expected.
1088 inline Condition NegateCondition(Condition cc) {
1089  DCHECK(cc != cc_always);
1090  return static_cast<Condition>(cc ^ 1);
1091 }
1092 
1093 
1094 inline Condition NegateFpuCondition(Condition cc) {
1095  DCHECK(cc != cc_always);
1096  switch (cc) {
1097  case ult:
1098  return ge;
1099  case ugt:
1100  return le;
1101  case uge:
1102  return lt;
1103  case ule:
1104  return gt;
1105  case lt:
1106  return uge;
1107  case gt:
1108  return ule;
1109  case ge:
1110  return ult;
1111  case le:
1112  return ugt;
1113  case eq:
1114  return ne;
1115  case ne:
1116  return eq;
1117  case ueq:
1118  return ogl;
1119  case ogl:
1120  return ueq;
1121  default:
1122  return cc;
1123  }
1124 }
1125 
1126 enum MSABranchCondition {
1127  all_not_zero = 0, // Branch If All Elements Are Not Zero
1128  one_elem_not_zero, // Branch If At Least One Element of Any Format Is Not
1129  // Zero
1130  one_elem_zero, // Branch If At Least One Element Is Zero
1131  all_zero // Branch If All Elements of Any Format Are Zero
1132 };
1133 
1134 inline MSABranchCondition NegateMSABranchCondition(MSABranchCondition cond) {
1135  switch (cond) {
1136  case all_not_zero:
1137  return one_elem_zero;
1138  case one_elem_not_zero:
1139  return all_zero;
1140  case one_elem_zero:
1141  return all_not_zero;
1142  case all_zero:
1143  return one_elem_not_zero;
1144  default:
1145  return cond;
1146  }
1147 }
1148 
1149 enum MSABranchDF {
1150  MSA_BRANCH_B = 0,
1151  MSA_BRANCH_H,
1152  MSA_BRANCH_W,
1153  MSA_BRANCH_D,
1154  MSA_BRANCH_V
1155 };
1156 
1157 
1158 // ----- Coprocessor conditions.
1159 enum FPUCondition {
1160  kNoFPUCondition = -1,
1161 
1162  F = 0x00, // False.
1163  UN = 0x01, // Unordered.
1164  EQ = 0x02, // Equal.
1165  UEQ = 0x03, // Unordered or Equal.
1166  OLT = 0x04, // Ordered or Less Than, on Mips release < 6.
1167  LT = 0x04, // Ordered or Less Than, on Mips release >= 6.
1168  ULT = 0x05, // Unordered or Less Than.
1169  OLE = 0x06, // Ordered or Less Than or Equal, on Mips release < 6.
1170  LE = 0x06, // Ordered or Less Than or Equal, on Mips release >= 6.
1171  ULE = 0x07, // Unordered or Less Than or Equal.
1172 
1173  // Following constants are available on Mips release >= 6 only.
1174  ORD = 0x11, // Ordered, on Mips release >= 6.
1175  UNE = 0x12, // Not equal, on Mips release >= 6.
1176  NE = 0x13, // Ordered Greater Than or Less Than. on Mips >= 6 only.
1177 };
1178 
1179 
1180 // FPU rounding modes.
1181 enum FPURoundingMode {
1182  RN = 0 << 0, // Round to Nearest.
1183  RZ = 1 << 0, // Round towards zero.
1184  RP = 2 << 0, // Round towards Plus Infinity.
1185  RM = 3 << 0, // Round towards Minus Infinity.
1186 
1187  // Aliases.
1188  kRoundToNearest = RN,
1189  kRoundToZero = RZ,
1190  kRoundToPlusInf = RP,
1191  kRoundToMinusInf = RM,
1192 
1193  mode_round = RN,
1194  mode_ceil = RP,
1195  mode_floor = RM,
1196  mode_trunc = RZ
1197 };
1198 
1199 const uint32_t kFPURoundingModeMask = 3 << 0;
1200 
1201 enum CheckForInexactConversion {
1202  kCheckForInexactConversion,
1203  kDontCheckForInexactConversion
1204 };
1205 
1206 enum class MaxMinKind : int { kMin = 0, kMax = 1 };
1207 
1208 // -----------------------------------------------------------------------------
1209 // Hints.
1210 
1211 // Branch hints are not used on the MIPS. They are defined so that they can
1212 // appear in shared function signatures, but will be ignored in MIPS
1213 // implementations.
1214 enum Hint {
1215  no_hint = 0
1216 };
1217 
1218 
1219 inline Hint NegateHint(Hint hint) {
1220  return no_hint;
1221 }
1222 
1223 
1224 // -----------------------------------------------------------------------------
1225 // Specific instructions, constants, and masks.
1226 // These constants are declared in assembler-mips.cc, as they use named
1227 // registers and other constants.
1228 
1229 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
1230 // operations as post-increment of sp.
1231 extern const Instr kPopInstruction;
1232 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
1233 extern const Instr kPushInstruction;
1234 // Sw(r, MemOperand(sp, 0))
1235 extern const Instr kPushRegPattern;
1236 // Lw(r, MemOperand(sp, 0))
1237 extern const Instr kPopRegPattern;
1238 extern const Instr kLwRegFpOffsetPattern;
1239 extern const Instr kSwRegFpOffsetPattern;
1240 extern const Instr kLwRegFpNegOffsetPattern;
1241 extern const Instr kSwRegFpNegOffsetPattern;
1242 // A mask for the Rt register for push, pop, lw, sw instructions.
1243 extern const Instr kRtMask;
1244 extern const Instr kLwSwInstrTypeMask;
1245 extern const Instr kLwSwInstrArgumentMask;
1246 extern const Instr kLwSwOffsetMask;
1247 
1248 // Break 0xfffff, reserved for redirected real time call.
1249 const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
1250 // A nop instruction. (Encoding of sll 0 0 0).
1251 const Instr nopInstr = 0;
1252 
1253 static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
1254  return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
1255 }
1256 
1257 constexpr uint8_t kInstrSize = 4;
1258 constexpr uint8_t kInstrSizeLog2 = 2;
1259 
1260 class InstructionBase {
1261  public:
1262  enum {
1263  // On MIPS PC cannot actually be directly accessed. We behave as if PC was
1264  // always the value of the current instruction being executed.
1265  kPCReadOffset = 0
1266  };
1267 
1268  // Instruction type.
1269  enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 };
1270 
1271  // Get the raw instruction bits.
1272  inline Instr InstructionBits() const {
1273  return *reinterpret_cast<const Instr*>(this);
1274  }
1275 
1276  // Set the raw instruction bits to value.
1277  inline void SetInstructionBits(Instr value) {
1278  *reinterpret_cast<Instr*>(this) = value;
1279  }
1280 
1281  // Read one particular bit out of the instruction bits.
1282  inline int Bit(int nr) const {
1283  return (InstructionBits() >> nr) & 1;
1284  }
1285 
1286  // Read a bit field out of the instruction bits.
1287  inline int Bits(int hi, int lo) const {
1288  return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
1289  }
1290 
1291  static constexpr uint64_t kOpcodeImmediateTypeMask =
1292  OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
1293  OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
1294  OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
1295  OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
1296  OpcodeToBitNumber(DADDIU) | OpcodeToBitNumber(SLTI) |
1297  OpcodeToBitNumber(SLTIU) | OpcodeToBitNumber(ANDI) |
1298  OpcodeToBitNumber(ORI) | OpcodeToBitNumber(XORI) |
1299  OpcodeToBitNumber(LUI) | OpcodeToBitNumber(BEQL) |
1300  OpcodeToBitNumber(BNEL) | OpcodeToBitNumber(BLEZL) |
1301  OpcodeToBitNumber(BGTZL) | OpcodeToBitNumber(POP66) |
1302  OpcodeToBitNumber(POP76) | OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) |
1303  OpcodeToBitNumber(LWL) | OpcodeToBitNumber(LW) | OpcodeToBitNumber(LWU) |
1304  OpcodeToBitNumber(LD) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
1305  OpcodeToBitNumber(LDL) | OpcodeToBitNumber(LDR) | OpcodeToBitNumber(LWR) |
1306  OpcodeToBitNumber(SDL) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
1307  OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SD) |
1308  OpcodeToBitNumber(SWR) | OpcodeToBitNumber(SDR) |
1309  OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
1310  OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
1311  OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(DAUI) |
1312  OpcodeToBitNumber(BC) | OpcodeToBitNumber(BALC);
1313 
1314 #define FunctionFieldToBitNumber(function) (1ULL << function)
1315 
1316  // On r6, DCLZ_R6 aliases to existing MFLO.
1317  static const uint64_t kFunctionFieldRegisterTypeMask =
1318  FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
1319  FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
1320  FunctionFieldToBitNumber(DSLL) | FunctionFieldToBitNumber(DSLL32) |
1321  FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(DSRL) |
1322  FunctionFieldToBitNumber(DSRL32) | FunctionFieldToBitNumber(SRA) |
1323  FunctionFieldToBitNumber(DSRA) | FunctionFieldToBitNumber(DSRA32) |
1324  FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(DSLLV) |
1325  FunctionFieldToBitNumber(SRLV) | FunctionFieldToBitNumber(DSRLV) |
1326  FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(DSRAV) |
1327  FunctionFieldToBitNumber(LSA) | FunctionFieldToBitNumber(DLSA) |
1328  FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
1329  FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(DMULT) |
1330  FunctionFieldToBitNumber(MULTU) | FunctionFieldToBitNumber(DMULTU) |
1331  FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DDIV) |
1332  FunctionFieldToBitNumber(DIVU) | FunctionFieldToBitNumber(DDIVU) |
1333  FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(DADD) |
1334  FunctionFieldToBitNumber(ADDU) | FunctionFieldToBitNumber(DADDU) |
1335  FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(DSUB) |
1336  FunctionFieldToBitNumber(SUBU) | FunctionFieldToBitNumber(DSUBU) |
1337  FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
1338  FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
1339  FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
1340  FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
1341  FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
1342  FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
1343  FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
1344  FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
1345  FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC);
1346 
1347 
1348  // Accessors for the different named fields used in the MIPS encoding.
1349  inline Opcode OpcodeValue() const {
1350  return static_cast<Opcode>(
1351  Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
1352  }
1353 
1354  inline int FunctionFieldRaw() const {
1355  return InstructionBits() & kFunctionFieldMask;
1356  }
1357 
1358  // Return the fields at their original place in the instruction encoding.
1359  inline Opcode OpcodeFieldRaw() const {
1360  return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
1361  }
1362 
1363  // Safe to call within InstructionType().
1364  inline int RsFieldRawNoAssert() const {
1365  return InstructionBits() & kRsFieldMask;
1366  }
1367 
1368  inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; }
1369 
1370  // Get the encoding type of the instruction.
1371  inline Type InstructionType() const;
1372 
1373  inline MSAMinorOpcode MSAMinorOpcodeField() const {
1374  int op = this->FunctionFieldRaw();
1375  switch (op) {
1376  case 0:
1377  case 1:
1378  case 2:
1379  return kMsaMinorI8;
1380  case 6:
1381  return kMsaMinorI5;
1382  case 7:
1383  return (((this->InstructionBits() & kMsaI5I10Mask) == LDI)
1384  ? kMsaMinorI10
1385  : kMsaMinorI5);
1386  case 9:
1387  case 10:
1388  return kMsaMinorBIT;
1389  case 13:
1390  case 14:
1391  case 15:
1392  case 16:
1393  case 17:
1394  case 18:
1395  case 19:
1396  case 20:
1397  case 21:
1398  return kMsaMinor3R;
1399  case 25:
1400  return kMsaMinorELM;
1401  case 26:
1402  case 27:
1403  case 28:
1404  return kMsaMinor3RF;
1405  case 30:
1406  switch (this->RsFieldRawNoAssert()) {
1407  case MSA_2R_FORMAT:
1408  return kMsaMinor2R;
1409  case MSA_2RF_FORMAT:
1410  return kMsaMinor2RF;
1411  default:
1412  return kMsaMinorVEC;
1413  }
1414  break;
1415  case 32:
1416  case 33:
1417  case 34:
1418  case 35:
1419  case 36:
1420  case 37:
1421  case 38:
1422  case 39:
1423  return kMsaMinorMI10;
1424  default:
1425  return kMsaMinorUndefined;
1426  }
1427  }
1428 
1429  protected:
1430  InstructionBase() {}
1431 };
1432 
1433 template <class T>
1434 class InstructionGetters : public T {
1435  public:
1436  inline int RsValue() const {
1437  DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1438  this->InstructionType() == InstructionBase::kImmediateType);
1439  return this->Bits(kRsShift + kRsBits - 1, kRsShift);
1440  }
1441 
1442  inline int RtValue() const {
1443  DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1444  this->InstructionType() == InstructionBase::kImmediateType);
1445  return this->Bits(kRtShift + kRtBits - 1, kRtShift);
1446  }
1447 
1448  inline int RdValue() const {
1449  DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1450  return this->Bits(kRdShift + kRdBits - 1, kRdShift);
1451  }
1452 
1453  inline int BaseValue() const {
1454  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1455  return this->Bits(kBaseShift + kBaseBits - 1, kBaseShift);
1456  }
1457 
1458  inline int SaValue() const {
1459  DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1460  return this->Bits(kSaShift + kSaBits - 1, kSaShift);
1461  }
1462 
1463  inline int LsaSaValue() const {
1464  DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1465  return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift);
1466  }
1467 
1468  inline int FunctionValue() const {
1469  DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1470  this->InstructionType() == InstructionBase::kImmediateType);
1471  return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
1472  }
1473 
1474  inline int FdValue() const {
1475  return this->Bits(kFdShift + kFdBits - 1, kFdShift);
1476  }
1477 
1478  inline int FsValue() const {
1479  return this->Bits(kFsShift + kFsBits - 1, kFsShift);
1480  }
1481 
1482  inline int FtValue() const {
1483  return this->Bits(kFtShift + kFtBits - 1, kFtShift);
1484  }
1485 
1486  inline int FrValue() const {
1487  return this->Bits(kFrShift + kFrBits - 1, kFrShift);
1488  }
1489 
1490  inline int WdValue() const {
1491  return this->Bits(kWdShift + kWdBits - 1, kWdShift);
1492  }
1493 
1494  inline int WsValue() const {
1495  return this->Bits(kWsShift + kWsBits - 1, kWsShift);
1496  }
1497 
1498  inline int WtValue() const {
1499  return this->Bits(kWtShift + kWtBits - 1, kWtShift);
1500  }
1501 
1502  inline int Bp2Value() const {
1503  DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1504  return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
1505  }
1506 
1507  inline int Bp3Value() const {
1508  DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1509  return this->Bits(kBp3Shift + kBp3Bits - 1, kBp3Shift);
1510  }
1511 
1512  // Float Compare condition code instruction bits.
1513  inline int FCccValue() const {
1514  return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift);
1515  }
1516 
1517  // Float Branch condition code instruction bits.
1518  inline int FBccValue() const {
1519  return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift);
1520  }
1521 
1522  // Float Branch true/false instruction bit.
1523  inline int FBtrueValue() const {
1524  return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
1525  }
1526 
1527  // Return the fields at their original place in the instruction encoding.
1528  inline Opcode OpcodeFieldRaw() const {
1529  return static_cast<Opcode>(this->InstructionBits() & kOpcodeMask);
1530  }
1531 
1532  inline int RsFieldRaw() const {
1533  DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1534  this->InstructionType() == InstructionBase::kImmediateType);
1535  return this->InstructionBits() & kRsFieldMask;
1536  }
1537 
1538  // Same as above function, but safe to call within InstructionType().
1539  inline int RsFieldRawNoAssert() const {
1540  return this->InstructionBits() & kRsFieldMask;
1541  }
1542 
1543  inline int RtFieldRaw() const {
1544  DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1545  this->InstructionType() == InstructionBase::kImmediateType);
1546  return this->InstructionBits() & kRtFieldMask;
1547  }
1548 
1549  inline int RdFieldRaw() const {
1550  DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1551  return this->InstructionBits() & kRdFieldMask;
1552  }
1553 
1554  inline int SaFieldRaw() const {
1555  return this->InstructionBits() & kSaFieldMask;
1556  }
1557 
1558  inline int FunctionFieldRaw() const {
1559  return this->InstructionBits() & kFunctionFieldMask;
1560  }
1561 
1562  // Get the secondary field according to the opcode.
1563  inline int SecondaryValue() const {
1564  Opcode op = this->OpcodeFieldRaw();
1565  switch (op) {
1566  case SPECIAL:
1567  case SPECIAL2:
1568  return FunctionValue();
1569  case COP1:
1570  return RsValue();
1571  case REGIMM:
1572  return RtValue();
1573  default:
1574  return nullptrSF;
1575  }
1576  }
1577 
1578  inline int32_t ImmValue(int bits) const {
1579  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1580  return this->Bits(bits - 1, 0);
1581  }
1582 
1583  inline int32_t Imm9Value() const {
1584  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1585  return this->Bits(kImm9Shift + kImm9Bits - 1, kImm9Shift);
1586  }
1587 
1588  inline int32_t Imm16Value() const {
1589  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1590  return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
1591  }
1592 
1593  inline int32_t Imm18Value() const {
1594  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1595  return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
1596  }
1597 
1598  inline int32_t Imm19Value() const {
1599  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1600  return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
1601  }
1602 
1603  inline int32_t Imm21Value() const {
1604  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1605  return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
1606  }
1607 
1608  inline int32_t Imm26Value() const {
1609  DCHECK((this->InstructionType() == InstructionBase::kJumpType) ||
1610  (this->InstructionType() == InstructionBase::kImmediateType));
1611  return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
1612  }
1613 
1614  inline int32_t MsaImm8Value() const {
1615  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1616  return this->Bits(kMsaImm8Shift + kMsaImm8Bits - 1, kMsaImm8Shift);
1617  }
1618 
1619  inline int32_t MsaImm5Value() const {
1620  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1621  return this->Bits(kMsaImm5Shift + kMsaImm5Bits - 1, kMsaImm5Shift);
1622  }
1623 
1624  inline int32_t MsaImm10Value() const {
1625  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1626  return this->Bits(kMsaImm10Shift + kMsaImm10Bits - 1, kMsaImm10Shift);
1627  }
1628 
1629  inline int32_t MsaImmMI10Value() const {
1630  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1631  return this->Bits(kMsaImmMI10Shift + kMsaImmMI10Bits - 1, kMsaImmMI10Shift);
1632  }
1633 
1634  inline int32_t MsaBitDf() const {
1635  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1636  int32_t df_m = this->Bits(22, 16);
1637  if (((df_m >> 6) & 1U) == 0) {
1638  return 3;
1639  } else if (((df_m >> 5) & 3U) == 2) {
1640  return 2;
1641  } else if (((df_m >> 4) & 7U) == 6) {
1642  return 1;
1643  } else if (((df_m >> 3) & 15U) == 14) {
1644  return 0;
1645  } else {
1646  return -1;
1647  }
1648  }
1649 
1650  inline int32_t MsaBitMValue() const {
1651  DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1652  return this->Bits(16 + this->MsaBitDf() + 3, 16);
1653  }
1654 
1655  inline int32_t MsaElmDf() const {
1656  DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1657  this->InstructionType() == InstructionBase::kImmediateType);
1658  int32_t df_n = this->Bits(21, 16);
1659  if (((df_n >> 4) & 3U) == 0) {
1660  return 0;
1661  } else if (((df_n >> 3) & 7U) == 4) {
1662  return 1;
1663  } else if (((df_n >> 2) & 15U) == 12) {
1664  return 2;
1665  } else if (((df_n >> 1) & 31U) == 28) {
1666  return 3;
1667  } else {
1668  return -1;
1669  }
1670  }
1671 
1672  inline int32_t MsaElmNValue() const {
1673  DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1674  this->InstructionType() == InstructionBase::kImmediateType);
1675  return this->Bits(16 + 4 - this->MsaElmDf(), 16);
1676  }
1677 
1678  static bool IsForbiddenAfterBranchInstr(Instr instr);
1679 
1680  // Say if the instruction should not be used in a branch delay slot or
1681  // immediately after a compact branch.
1682  inline bool IsForbiddenAfterBranch() const {
1683  return IsForbiddenAfterBranchInstr(this->InstructionBits());
1684  }
1685 
1686  inline bool IsForbiddenInBranchDelay() const {
1687  return IsForbiddenAfterBranch();
1688  }
1689 
1690  // Say if the instruction 'links'. e.g. jal, bal.
1691  bool IsLinkingInstruction() const;
1692  // Say if the instruction is a break or a trap.
1693  bool IsTrap() const;
1694 
1695  inline bool IsMSABranchInstr() const {
1696  if (this->OpcodeFieldRaw() == COP1) {
1697  switch (this->RsFieldRaw()) {
1698  case BZ_V:
1699  case BZ_B:
1700  case BZ_H:
1701  case BZ_W:
1702  case BZ_D:
1703  case BNZ_V:
1704  case BNZ_B:
1705  case BNZ_H:
1706  case BNZ_W:
1707  case BNZ_D:
1708  return true;
1709  default:
1710  return false;
1711  }
1712  }
1713  return false;
1714  }
1715 
1716  inline bool IsMSAInstr() const {
1717  if (this->IsMSABranchInstr() || (this->OpcodeFieldRaw() == MSA))
1718  return true;
1719  return false;
1720  }
1721 };
1722 
1723 class Instruction : public InstructionGetters<InstructionBase> {
1724  public:
1725  // Instructions are read of out a code stream. The only way to get a
1726  // reference to an instruction is to convert a pointer. There is no way
1727  // to allocate or create instances of class Instruction.
1728  // Use the At(pc) function to create references to Instruction.
1729  static Instruction* At(byte* pc) {
1730  return reinterpret_cast<Instruction*>(pc);
1731  }
1732 
1733  private:
1734  // We need to prevent the creation of instances of class Instruction.
1735  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
1736 };
1737 
1738 
1739 // -----------------------------------------------------------------------------
1740 // MIPS assembly various constants.
1741 
1742 // C/C++ argument slots size.
1743 const int kCArgSlotCount = 0;
1744 
1745 // TODO(plind): below should be based on kPointerSize
1746 // TODO(plind): find all usages and remove the needless instructions for n64.
1747 const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize * 2;
1748 
1749 const int kInvalidStackOffset = -1;
1750 const int kBranchReturnOffset = 2 * kInstrSize;
1751 
1752 static const int kNegOffset = 0x00008000;
1753 
1754 InstructionBase::Type InstructionBase::InstructionType() const {
1755  switch (OpcodeFieldRaw()) {
1756  case SPECIAL:
1757  if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
1758  kFunctionFieldRegisterTypeMask) {
1759  return kRegisterType;
1760  }
1761  return kUnsupported;
1762  case SPECIAL2:
1763  switch (FunctionFieldRaw()) {
1764  case MUL:
1765  case CLZ:
1766  case DCLZ:
1767  return kRegisterType;
1768  default:
1769  return kUnsupported;
1770  }
1771  break;
1772  case SPECIAL3:
1773  switch (FunctionFieldRaw()) {
1774  case INS:
1775  case DINS:
1776  case DINSM:
1777  case DINSU:
1778  case EXT:
1779  case DEXT:
1780  case DEXTM:
1781  case DEXTU:
1782  return kRegisterType;
1783  case BSHFL: {
1784  int sa = SaFieldRaw() >> kSaShift;
1785  switch (sa) {
1786  case BITSWAP:
1787  case WSBH:
1788  case SEB:
1789  case SEH:
1790  return kRegisterType;
1791  }
1792  sa >>= kBp2Bits;
1793  switch (sa) {
1794  case ALIGN:
1795  return kRegisterType;
1796  default:
1797  return kUnsupported;
1798  }
1799  }
1800  case LL_R6:
1801  case LLD_R6:
1802  case SC_R6:
1803  case SCD_R6: {
1804  DCHECK_EQ(kArchVariant, kMips64r6);
1805  return kImmediateType;
1806  }
1807  case DBSHFL: {
1808  int sa = SaFieldRaw() >> kSaShift;
1809  switch (sa) {
1810  case DBITSWAP:
1811  case DSBH:
1812  case DSHD:
1813  return kRegisterType;
1814  }
1815  sa = SaFieldRaw() >> kSaShift;
1816  sa >>= kBp3Bits;
1817  switch (sa) {
1818  case DALIGN:
1819  return kRegisterType;
1820  default:
1821  return kUnsupported;
1822  }
1823  }
1824  default:
1825  return kUnsupported;
1826  }
1827  break;
1828  case COP1: // Coprocessor instructions.
1829  switch (RsFieldRawNoAssert()) {
1830  case BC1: // Branch on coprocessor condition.
1831  case BC1EQZ:
1832  case BC1NEZ:
1833  return kImmediateType;
1834  // MSA Branch instructions
1835  case BZ_V:
1836  case BNZ_V:
1837  case BZ_B:
1838  case BZ_H:
1839  case BZ_W:
1840  case BZ_D:
1841  case BNZ_B:
1842  case BNZ_H:
1843  case BNZ_W:
1844  case BNZ_D:
1845  return kImmediateType;
1846  default:
1847  return kRegisterType;
1848  }
1849  break;
1850  case COP1X:
1851  return kRegisterType;
1852 
1853  // 26 bits immediate type instructions. e.g.: j imm26.
1854  case J:
1855  case JAL:
1856  return kJumpType;
1857 
1858  case MSA:
1859  switch (MSAMinorOpcodeField()) {
1860  case kMsaMinor3R:
1861  case kMsaMinor3RF:
1862  case kMsaMinorVEC:
1863  case kMsaMinor2R:
1864  case kMsaMinor2RF:
1865  return kRegisterType;
1866  case kMsaMinorELM:
1867  switch (InstructionBits() & kMsaLongerELMMask) {
1868  case CFCMSA:
1869  case CTCMSA:
1870  case MOVE_V:
1871  return kRegisterType;
1872  default:
1873  return kImmediateType;
1874  }
1875  default:
1876  return kImmediateType;
1877  }
1878 
1879  default:
1880  return kImmediateType;
1881  }
1882  return kUnsupported;
1883 }
1884 #undef OpcodeToBitNumber
1885 #undef FunctionFieldToBitNumber
1886 
1887 // -----------------------------------------------------------------------------
1888 // Instructions.
1889 
1890 template <class P>
1891 bool InstructionGetters<P>::IsLinkingInstruction() const {
1892  switch (OpcodeFieldRaw()) {
1893  case JAL:
1894  return true;
1895  case POP76:
1896  if (RsFieldRawNoAssert() == JIALC)
1897  return true; // JIALC
1898  else
1899  return false; // BNEZC
1900  case REGIMM:
1901  switch (RtFieldRaw()) {
1902  case BGEZAL:
1903  case BLTZAL:
1904  return true;
1905  default:
1906  return false;
1907  }
1908  case SPECIAL:
1909  switch (FunctionFieldRaw()) {
1910  case JALR:
1911  return true;
1912  default:
1913  return false;
1914  }
1915  default:
1916  return false;
1917  }
1918 }
1919 
1920 template <class P>
1921 bool InstructionGetters<P>::IsTrap() const {
1922  if (OpcodeFieldRaw() != SPECIAL) {
1923  return false;
1924  } else {
1925  switch (FunctionFieldRaw()) {
1926  case BREAK:
1927  case TGE:
1928  case TGEU:
1929  case TLT:
1930  case TLTU:
1931  case TEQ:
1932  case TNE:
1933  return true;
1934  default:
1935  return false;
1936  }
1937  }
1938 }
1939 
1940 // static
1941 template <class T>
1942 bool InstructionGetters<T>::IsForbiddenAfterBranchInstr(Instr instr) {
1943  Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
1944  switch (opcode) {
1945  case J:
1946  case JAL:
1947  case BEQ:
1948  case BNE:
1949  case BLEZ: // POP06 bgeuc/bleuc, blezalc, bgezalc
1950  case BGTZ: // POP07 bltuc/bgtuc, bgtzalc, bltzalc
1951  case BEQL:
1952  case BNEL:
1953  case BLEZL: // POP26 bgezc, blezc, bgec/blec
1954  case BGTZL: // POP27 bgtzc, bltzc, bltc/bgtc
1955  case BC:
1956  case BALC:
1957  case POP10: // beqzalc, bovc, beqc
1958  case POP30: // bnezalc, bnvc, bnec
1959  case POP66: // beqzc, jic
1960  case POP76: // bnezc, jialc
1961  return true;
1962  case REGIMM:
1963  switch (instr & kRtFieldMask) {
1964  case BLTZ:
1965  case BGEZ:
1966  case BLTZAL:
1967  case BGEZAL:
1968  return true;
1969  default:
1970  return false;
1971  }
1972  break;
1973  case SPECIAL:
1974  switch (instr & kFunctionFieldMask) {
1975  case JR:
1976  case JALR:
1977  return true;
1978  default:
1979  return false;
1980  }
1981  break;
1982  case COP1:
1983  switch (instr & kRsFieldMask) {
1984  case BC1:
1985  case BC1EQZ:
1986  case BC1NEZ:
1987  case BZ_V:
1988  case BZ_B:
1989  case BZ_H:
1990  case BZ_W:
1991  case BZ_D:
1992  case BNZ_V:
1993  case BNZ_B:
1994  case BNZ_H:
1995  case BNZ_W:
1996  case BNZ_D:
1997  return true;
1998  break;
1999  default:
2000  return false;
2001  }
2002  break;
2003  default:
2004  return false;
2005  }
2006 }
2007 } // namespace internal
2008 } // namespace v8
2009 
2010 #endif // V8_MIPS64_CONSTANTS_MIPS64_H_
Definition: libplatform.h:13