V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
bignum.cc
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/bignum.h"
6 #include "src/utils.h"
7 
8 namespace v8 {
9 namespace internal {
10 
11 Bignum::Bignum()
12  : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
13  for (int i = 0; i < kBigitCapacity; ++i) {
14  bigits_[i] = 0;
15  }
16 }
17 
18 
19 template<typename S>
20 static int BitSize(S value) {
21  return 8 * sizeof(value);
22 }
23 
24 
25 // Guaranteed to lie in one Bigit.
26 void Bignum::AssignUInt16(uint16_t value) {
27  DCHECK_GE(kBigitSize, BitSize(value));
28  Zero();
29  if (value == 0) return;
30 
31  EnsureCapacity(1);
32  bigits_[0] = value;
33  used_digits_ = 1;
34 }
35 
36 
37 void Bignum::AssignUInt64(uint64_t value) {
38  const int kUInt64Size = 64;
39 
40  Zero();
41  if (value == 0) return;
42 
43  int needed_bigits = kUInt64Size / kBigitSize + 1;
44  EnsureCapacity(needed_bigits);
45  for (int i = 0; i < needed_bigits; ++i) {
46  bigits_[i] = static_cast<Chunk>(value & kBigitMask);
47  value = value >> kBigitSize;
48  }
49  used_digits_ = needed_bigits;
50  Clamp();
51 }
52 
53 
54 void Bignum::AssignBignum(const Bignum& other) {
55  exponent_ = other.exponent_;
56  for (int i = 0; i < other.used_digits_; ++i) {
57  bigits_[i] = other.bigits_[i];
58  }
59  // Clear the excess digits (if there were any).
60  for (int i = other.used_digits_; i < used_digits_; ++i) {
61  bigits_[i] = 0;
62  }
63  used_digits_ = other.used_digits_;
64 }
65 
66 
67 static uint64_t ReadUInt64(Vector<const char> buffer,
68  int from,
69  int digits_to_read) {
70  uint64_t result = 0;
71  int to = from + digits_to_read;
72 
73  for (int i = from; i < to; ++i) {
74  int digit = buffer[i] - '0';
75  DCHECK(0 <= digit && digit <= 9);
76  result = result * 10 + digit;
77  }
78  return result;
79 }
80 
81 
82 void Bignum::AssignDecimalString(Vector<const char> value) {
83  // 2^64 = 18446744073709551616 > 10^19
84  const int kMaxUint64DecimalDigits = 19;
85  Zero();
86  int length = value.length();
87  int pos = 0;
88  // Let's just say that each digit needs 4 bits.
89  while (length >= kMaxUint64DecimalDigits) {
90  uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
91  pos += kMaxUint64DecimalDigits;
92  length -= kMaxUint64DecimalDigits;
93  MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
94  AddUInt64(digits);
95  }
96  uint64_t digits = ReadUInt64(value, pos, length);
97  MultiplyByPowerOfTen(length);
98  AddUInt64(digits);
99  Clamp();
100 }
101 
102 
103 static int HexCharValue(char c) {
104  if ('0' <= c && c <= '9') return c - '0';
105  if ('a' <= c && c <= 'f') return 10 + c - 'a';
106  if ('A' <= c && c <= 'F') return 10 + c - 'A';
107  UNREACHABLE();
108 }
109 
110 
111 void Bignum::AssignHexString(Vector<const char> value) {
112  Zero();
113  int length = value.length();
114 
115  int needed_bigits = length * 4 / kBigitSize + 1;
116  EnsureCapacity(needed_bigits);
117  int string_index = length - 1;
118  for (int i = 0; i < needed_bigits - 1; ++i) {
119  // These bigits are guaranteed to be "full".
120  Chunk current_bigit = 0;
121  for (int j = 0; j < kBigitSize / 4; j++) {
122  current_bigit += HexCharValue(value[string_index--]) << (j * 4);
123  }
124  bigits_[i] = current_bigit;
125  }
126  used_digits_ = needed_bigits - 1;
127 
128  Chunk most_significant_bigit = 0; // Could be = 0;
129  for (int j = 0; j <= string_index; ++j) {
130  most_significant_bigit <<= 4;
131  most_significant_bigit += HexCharValue(value[j]);
132  }
133  if (most_significant_bigit != 0) {
134  bigits_[used_digits_] = most_significant_bigit;
135  used_digits_++;
136  }
137  Clamp();
138 }
139 
140 
141 void Bignum::AddUInt64(uint64_t operand) {
142  if (operand == 0) return;
143  Bignum other;
144  other.AssignUInt64(operand);
145  AddBignum(other);
146 }
147 
148 
149 void Bignum::AddBignum(const Bignum& other) {
150  DCHECK(IsClamped());
151  DCHECK(other.IsClamped());
152 
153  // If this has a greater exponent than other append zero-bigits to this.
154  // After this call exponent_ <= other.exponent_.
155  Align(other);
156 
157  // There are two possibilities:
158  // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
159  // bbbbb 00000000
160  // ----------------
161  // ccccccccccc 0000
162  // or
163  // aaaaaaaaaa 0000
164  // bbbbbbbbb 0000000
165  // -----------------
166  // cccccccccccc 0000
167  // In both cases we might need a carry bigit.
168 
169  EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
170  Chunk carry = 0;
171  int bigit_pos = other.exponent_ - exponent_;
172  DCHECK_GE(bigit_pos, 0);
173  for (int i = 0; i < other.used_digits_; ++i) {
174  Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
175  bigits_[bigit_pos] = sum & kBigitMask;
176  carry = sum >> kBigitSize;
177  bigit_pos++;
178  }
179 
180  while (carry != 0) {
181  Chunk sum = bigits_[bigit_pos] + carry;
182  bigits_[bigit_pos] = sum & kBigitMask;
183  carry = sum >> kBigitSize;
184  bigit_pos++;
185  }
186  used_digits_ = Max(bigit_pos, used_digits_);
187  DCHECK(IsClamped());
188 }
189 
190 
191 void Bignum::SubtractBignum(const Bignum& other) {
192  DCHECK(IsClamped());
193  DCHECK(other.IsClamped());
194  // We require this to be bigger than other.
195  DCHECK(LessEqual(other, *this));
196 
197  Align(other);
198 
199  int offset = other.exponent_ - exponent_;
200  Chunk borrow = 0;
201  int i;
202  for (i = 0; i < other.used_digits_; ++i) {
203  DCHECK((borrow == 0) || (borrow == 1));
204  Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
205  bigits_[i + offset] = difference & kBigitMask;
206  borrow = difference >> (kChunkSize - 1);
207  }
208  while (borrow != 0) {
209  Chunk difference = bigits_[i + offset] - borrow;
210  bigits_[i + offset] = difference & kBigitMask;
211  borrow = difference >> (kChunkSize - 1);
212  ++i;
213  }
214  Clamp();
215 }
216 
217 
218 void Bignum::ShiftLeft(int shift_amount) {
219  if (used_digits_ == 0) return;
220  exponent_ += shift_amount / kBigitSize;
221  int local_shift = shift_amount % kBigitSize;
222  EnsureCapacity(used_digits_ + 1);
223  BigitsShiftLeft(local_shift);
224 }
225 
226 
227 void Bignum::MultiplyByUInt32(uint32_t factor) {
228  if (factor == 1) return;
229  if (factor == 0) {
230  Zero();
231  return;
232  }
233  if (used_digits_ == 0) return;
234 
235  // The product of a bigit with the factor is of size kBigitSize + 32.
236  // Assert that this number + 1 (for the carry) fits into double chunk.
237  DCHECK_GE(kDoubleChunkSize, kBigitSize + 32 + 1);
238  DoubleChunk carry = 0;
239  for (int i = 0; i < used_digits_; ++i) {
240  DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
241  bigits_[i] = static_cast<Chunk>(product & kBigitMask);
242  carry = (product >> kBigitSize);
243  }
244  while (carry != 0) {
245  EnsureCapacity(used_digits_ + 1);
246  bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
247  used_digits_++;
248  carry >>= kBigitSize;
249  }
250 }
251 
252 
253 void Bignum::MultiplyByUInt64(uint64_t factor) {
254  if (factor == 1) return;
255  if (factor == 0) {
256  Zero();
257  return;
258  }
259  DCHECK_LT(kBigitSize, 32);
260  uint64_t carry = 0;
261  uint64_t low = factor & 0xFFFFFFFF;
262  uint64_t high = factor >> 32;
263  for (int i = 0; i < used_digits_; ++i) {
264  uint64_t product_low = low * bigits_[i];
265  uint64_t product_high = high * bigits_[i];
266  uint64_t tmp = (carry & kBigitMask) + product_low;
267  bigits_[i] = static_cast<Chunk>(tmp & kBigitMask);
268  carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
269  (product_high << (32 - kBigitSize));
270  }
271  while (carry != 0) {
272  EnsureCapacity(used_digits_ + 1);
273  bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
274  used_digits_++;
275  carry >>= kBigitSize;
276  }
277 }
278 
279 
280 void Bignum::MultiplyByPowerOfTen(int exponent) {
281  const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765C793, fa10079d);
282  const uint16_t kFive1 = 5;
283  const uint16_t kFive2 = kFive1 * 5;
284  const uint16_t kFive3 = kFive2 * 5;
285  const uint16_t kFive4 = kFive3 * 5;
286  const uint16_t kFive5 = kFive4 * 5;
287  const uint16_t kFive6 = kFive5 * 5;
288  const uint32_t kFive7 = kFive6 * 5;
289  const uint32_t kFive8 = kFive7 * 5;
290  const uint32_t kFive9 = kFive8 * 5;
291  const uint32_t kFive10 = kFive9 * 5;
292  const uint32_t kFive11 = kFive10 * 5;
293  const uint32_t kFive12 = kFive11 * 5;
294  const uint32_t kFive13 = kFive12 * 5;
295  const uint32_t kFive1_to_12[] =
296  { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
297  kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
298 
299  DCHECK_GE(exponent, 0);
300  if (exponent == 0) return;
301  if (used_digits_ == 0) return;
302 
303  // We shift by exponent at the end just before returning.
304  int remaining_exponent = exponent;
305  while (remaining_exponent >= 27) {
306  MultiplyByUInt64(kFive27);
307  remaining_exponent -= 27;
308  }
309  while (remaining_exponent >= 13) {
310  MultiplyByUInt32(kFive13);
311  remaining_exponent -= 13;
312  }
313  if (remaining_exponent > 0) {
314  MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
315  }
316  ShiftLeft(exponent);
317 }
318 
319 
320 void Bignum::Square() {
321  DCHECK(IsClamped());
322  int product_length = 2 * used_digits_;
323  EnsureCapacity(product_length);
324 
325  // Comba multiplication: compute each column separately.
326  // Example: r = a2a1a0 * b2b1b0.
327  // r = 1 * a0b0 +
328  // 10 * (a1b0 + a0b1) +
329  // 100 * (a2b0 + a1b1 + a0b2) +
330  // 1000 * (a2b1 + a1b2) +
331  // 10000 * a2b2
332  //
333  // In the worst case we have to accumulate nb-digits products of digit*digit.
334  //
335  // Assert that the additional number of bits in a DoubleChunk are enough to
336  // sum up used_digits of Bigit*Bigit.
337  if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
338  UNIMPLEMENTED();
339  }
340  DoubleChunk accumulator = 0;
341  // First shift the digits so we don't overwrite them.
342  int copy_offset = used_digits_;
343  for (int i = 0; i < used_digits_; ++i) {
344  bigits_[copy_offset + i] = bigits_[i];
345  }
346  // We have two loops to avoid some 'if's in the loop.
347  for (int i = 0; i < used_digits_; ++i) {
348  // Process temporary digit i with power i.
349  // The sum of the two indices must be equal to i.
350  int bigit_index1 = i;
351  int bigit_index2 = 0;
352  // Sum all of the sub-products.
353  while (bigit_index1 >= 0) {
354  Chunk chunk1 = bigits_[copy_offset + bigit_index1];
355  Chunk chunk2 = bigits_[copy_offset + bigit_index2];
356  accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
357  bigit_index1--;
358  bigit_index2++;
359  }
360  bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
361  accumulator >>= kBigitSize;
362  }
363  for (int i = used_digits_; i < product_length; ++i) {
364  int bigit_index1 = used_digits_ - 1;
365  int bigit_index2 = i - bigit_index1;
366  // Invariant: sum of both indices is again equal to i.
367  // Inner loop runs 0 times on last iteration, emptying accumulator.
368  while (bigit_index2 < used_digits_) {
369  Chunk chunk1 = bigits_[copy_offset + bigit_index1];
370  Chunk chunk2 = bigits_[copy_offset + bigit_index2];
371  accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
372  bigit_index1--;
373  bigit_index2++;
374  }
375  // The overwritten bigits_[i] will never be read in further loop iterations,
376  // because bigit_index1 and bigit_index2 are always greater
377  // than i - used_digits_.
378  bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
379  accumulator >>= kBigitSize;
380  }
381  // Since the result was guaranteed to lie inside the number the
382  // accumulator must be 0 now.
383  DCHECK_EQ(accumulator, 0);
384 
385  // Don't forget to update the used_digits and the exponent.
386  used_digits_ = product_length;
387  exponent_ *= 2;
388  Clamp();
389 }
390 
391 
392 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
393  DCHECK_NE(base, 0);
394  DCHECK_GE(power_exponent, 0);
395  if (power_exponent == 0) {
396  AssignUInt16(1);
397  return;
398  }
399  Zero();
400  int shifts = 0;
401  // We expect base to be in range 2-32, and most often to be 10.
402  // It does not make much sense to implement different algorithms for counting
403  // the bits.
404  while ((base & 1) == 0) {
405  base >>= 1;
406  shifts++;
407  }
408  int bit_size = 0;
409  int tmp_base = base;
410  while (tmp_base != 0) {
411  tmp_base >>= 1;
412  bit_size++;
413  }
414  int final_size = bit_size * power_exponent;
415  // 1 extra bigit for the shifting, and one for rounded final_size.
416  EnsureCapacity(final_size / kBigitSize + 2);
417 
418  // Left to Right exponentiation.
419  int mask = 1;
420  while (power_exponent >= mask) mask <<= 1;
421 
422  // The mask is now pointing to the bit above the most significant 1-bit of
423  // power_exponent.
424  // Get rid of first 1-bit;
425  mask >>= 2;
426  uint64_t this_value = base;
427 
428  bool delayed_multipliciation = false;
429  const uint64_t max_32bits = 0xFFFFFFFF;
430  while (mask != 0 && this_value <= max_32bits) {
431  this_value = this_value * this_value;
432  // Verify that there is enough space in this_value to perform the
433  // multiplication. The first bit_size bits must be 0.
434  if ((power_exponent & mask) != 0) {
435  uint64_t base_bits_mask =
436  ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
437  bool high_bits_zero = (this_value & base_bits_mask) == 0;
438  if (high_bits_zero) {
439  this_value *= base;
440  } else {
441  delayed_multipliciation = true;
442  }
443  }
444  mask >>= 1;
445  }
446  AssignUInt64(this_value);
447  if (delayed_multipliciation) {
448  MultiplyByUInt32(base);
449  }
450 
451  // Now do the same thing as a bignum.
452  while (mask != 0) {
453  Square();
454  if ((power_exponent & mask) != 0) {
455  MultiplyByUInt32(base);
456  }
457  mask >>= 1;
458  }
459 
460  // And finally add the saved shifts.
461  ShiftLeft(shifts * power_exponent);
462 }
463 
464 
465 // Precondition: this/other < 16bit.
466 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
467  DCHECK(IsClamped());
468  DCHECK(other.IsClamped());
469  DCHECK_GT(other.used_digits_, 0);
470 
471  // Easy case: if we have less digits than the divisor than the result is 0.
472  // Note: this handles the case where this == 0, too.
473  if (BigitLength() < other.BigitLength()) {
474  return 0;
475  }
476 
477  Align(other);
478 
479  uint16_t result = 0;
480 
481  // Start by removing multiples of 'other' until both numbers have the same
482  // number of digits.
483  while (BigitLength() > other.BigitLength()) {
484  // This naive approach is extremely inefficient if the this divided other
485  // might be big. This function is implemented for doubleToString where
486  // the result should be small (less than 10).
487  DCHECK(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
488  // Remove the multiples of the first digit.
489  // Example this = 23 and other equals 9. -> Remove 2 multiples.
490  result += bigits_[used_digits_ - 1];
491  SubtractTimes(other, bigits_[used_digits_ - 1]);
492  }
493 
494  DCHECK(BigitLength() == other.BigitLength());
495 
496  // Both bignums are at the same length now.
497  // Since other has more than 0 digits we know that the access to
498  // bigits_[used_digits_ - 1] is safe.
499  Chunk this_bigit = bigits_[used_digits_ - 1];
500  Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
501 
502  if (other.used_digits_ == 1) {
503  // Shortcut for easy (and common) case.
504  int quotient = this_bigit / other_bigit;
505  bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
506  result += quotient;
507  Clamp();
508  return result;
509  }
510 
511  int division_estimate = this_bigit / (other_bigit + 1);
512  result += division_estimate;
513  SubtractTimes(other, division_estimate);
514 
515  if (other_bigit * (division_estimate + 1) > this_bigit) {
516  // No need to even try to subtract. Even if other's remaining digits were 0
517  // another subtraction would be too much.
518  return result;
519  }
520 
521  while (LessEqual(other, *this)) {
522  SubtractBignum(other);
523  result++;
524  }
525  return result;
526 }
527 
528 
529 template<typename S>
530 static int SizeInHexChars(S number) {
531  DCHECK_GT(number, 0);
532  int result = 0;
533  while (number != 0) {
534  number >>= 4;
535  result++;
536  }
537  return result;
538 }
539 
540 
541 bool Bignum::ToHexString(char* buffer, int buffer_size) const {
542  DCHECK(IsClamped());
543  // Each bigit must be printable as separate hex-character.
544  DCHECK_EQ(kBigitSize % 4, 0);
545  const int kHexCharsPerBigit = kBigitSize / 4;
546 
547  if (used_digits_ == 0) {
548  if (buffer_size < 2) return false;
549  buffer[0] = '0';
550  buffer[1] = '\0';
551  return true;
552  }
553  // We add 1 for the terminating '\0' character.
554  int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
555  SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
556  if (needed_chars > buffer_size) return false;
557  int string_index = needed_chars - 1;
558  buffer[string_index--] = '\0';
559  for (int i = 0; i < exponent_; ++i) {
560  for (int j = 0; j < kHexCharsPerBigit; ++j) {
561  buffer[string_index--] = '0';
562  }
563  }
564  for (int i = 0; i < used_digits_ - 1; ++i) {
565  Chunk current_bigit = bigits_[i];
566  for (int j = 0; j < kHexCharsPerBigit; ++j) {
567  buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
568  current_bigit >>= 4;
569  }
570  }
571  // And finally the last bigit.
572  Chunk most_significant_bigit = bigits_[used_digits_ - 1];
573  while (most_significant_bigit != 0) {
574  buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
575  most_significant_bigit >>= 4;
576  }
577  return true;
578 }
579 
580 
581 Bignum::Chunk Bignum::BigitAt(int index) const {
582  if (index >= BigitLength()) return 0;
583  if (index < exponent_) return 0;
584  return bigits_[index - exponent_];
585 }
586 
587 
588 int Bignum::Compare(const Bignum& a, const Bignum& b) {
589  DCHECK(a.IsClamped());
590  DCHECK(b.IsClamped());
591  int bigit_length_a = a.BigitLength();
592  int bigit_length_b = b.BigitLength();
593  if (bigit_length_a < bigit_length_b) return -1;
594  if (bigit_length_a > bigit_length_b) return +1;
595  for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
596  Chunk bigit_a = a.BigitAt(i);
597  Chunk bigit_b = b.BigitAt(i);
598  if (bigit_a < bigit_b) return -1;
599  if (bigit_a > bigit_b) return +1;
600  // Otherwise they are equal up to this digit. Try the next digit.
601  }
602  return 0;
603 }
604 
605 
606 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
607  DCHECK(a.IsClamped());
608  DCHECK(b.IsClamped());
609  DCHECK(c.IsClamped());
610  if (a.BigitLength() < b.BigitLength()) {
611  return PlusCompare(b, a, c);
612  }
613  if (a.BigitLength() + 1 < c.BigitLength()) return -1;
614  if (a.BigitLength() > c.BigitLength()) return +1;
615  // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
616  // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
617  // of 'a'.
618  if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
619  return -1;
620  }
621 
622  Chunk borrow = 0;
623  // Starting at min_exponent all digits are == 0. So no need to compare them.
624  int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
625  for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
626  Chunk chunk_a = a.BigitAt(i);
627  Chunk chunk_b = b.BigitAt(i);
628  Chunk chunk_c = c.BigitAt(i);
629  Chunk sum = chunk_a + chunk_b;
630  if (sum > chunk_c + borrow) {
631  return +1;
632  } else {
633  borrow = chunk_c + borrow - sum;
634  if (borrow > 1) return -1;
635  borrow <<= kBigitSize;
636  }
637  }
638  if (borrow == 0) return 0;
639  return -1;
640 }
641 
642 
643 void Bignum::Clamp() {
644  while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
645  used_digits_--;
646  }
647  if (used_digits_ == 0) {
648  // Zero.
649  exponent_ = 0;
650  }
651 }
652 
653 
654 bool Bignum::IsClamped() const {
655  return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
656 }
657 
658 
659 void Bignum::Zero() {
660  for (int i = 0; i < used_digits_; ++i) {
661  bigits_[i] = 0;
662  }
663  used_digits_ = 0;
664  exponent_ = 0;
665 }
666 
667 
668 void Bignum::Align(const Bignum& other) {
669  if (exponent_ > other.exponent_) {
670  // If "X" represents a "hidden" digit (by the exponent) then we are in the
671  // following case (a == this, b == other):
672  // a: aaaaaaXXXX or a: aaaaaXXX
673  // b: bbbbbbX b: bbbbbbbbXX
674  // We replace some of the hidden digits (X) of a with 0 digits.
675  // a: aaaaaa000X or a: aaaaa0XX
676  int zero_digits = exponent_ - other.exponent_;
677  EnsureCapacity(used_digits_ + zero_digits);
678  for (int i = used_digits_ - 1; i >= 0; --i) {
679  bigits_[i + zero_digits] = bigits_[i];
680  }
681  for (int i = 0; i < zero_digits; ++i) {
682  bigits_[i] = 0;
683  }
684  used_digits_ += zero_digits;
685  exponent_ -= zero_digits;
686  DCHECK_GE(used_digits_, 0);
687  DCHECK_GE(exponent_, 0);
688  }
689 }
690 
691 
692 void Bignum::BigitsShiftLeft(int shift_amount) {
693  DCHECK_LT(shift_amount, kBigitSize);
694  DCHECK_GE(shift_amount, 0);
695  Chunk carry = 0;
696  for (int i = 0; i < used_digits_; ++i) {
697  Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
698  bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
699  carry = new_carry;
700  }
701  if (carry != 0) {
702  bigits_[used_digits_] = carry;
703  used_digits_++;
704  }
705 }
706 
707 
708 void Bignum::SubtractTimes(const Bignum& other, int factor) {
709 #ifdef DEBUG
710  Bignum a, b;
711  a.AssignBignum(*this);
712  b.AssignBignum(other);
713  b.MultiplyByUInt32(factor);
714  a.SubtractBignum(b);
715 #endif
716  DCHECK(exponent_ <= other.exponent_);
717  if (factor < 3) {
718  for (int i = 0; i < factor; ++i) {
719  SubtractBignum(other);
720  }
721  return;
722  }
723  Chunk borrow = 0;
724  int exponent_diff = other.exponent_ - exponent_;
725  for (int i = 0; i < other.used_digits_; ++i) {
726  DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
727  DoubleChunk remove = borrow + product;
728  Chunk difference =
729  bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask);
730  bigits_[i + exponent_diff] = difference & kBigitMask;
731  borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
732  (remove >> kBigitSize));
733  }
734  for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
735  if (borrow == 0) return;
736  Chunk difference = bigits_[i] - borrow;
737  bigits_[i] = difference & kBigitMask;
738  borrow = difference >> (kChunkSize - 1);
739  }
740  Clamp();
741  DCHECK(Bignum::Equal(a, *this));
742 }
743 
744 
745 } // namespace internal
746 } // namespace v8
Definition: libplatform.h:13