V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
bignum-dtoa.cc
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/bignum-dtoa.h"
6 
7 #include <cmath>
8 
9 #include "src/base/logging.h"
10 #include "src/bignum.h"
11 #include "src/double.h"
12 #include "src/utils.h"
13 
14 namespace v8 {
15 namespace internal {
16 
17 static int NormalizedExponent(uint64_t significand, int exponent) {
18  DCHECK_NE(significand, 0);
19  while ((significand & Double::kHiddenBit) == 0) {
20  significand = significand << 1;
21  exponent = exponent - 1;
22  }
23  return exponent;
24 }
25 
26 
27 // Forward declarations:
28 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
29 static int EstimatePower(int exponent);
30 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
31 // and denominator.
32 static void InitialScaledStartValues(double v,
33  int estimated_power,
34  bool need_boundary_deltas,
35  Bignum* numerator,
36  Bignum* denominator,
37  Bignum* delta_minus,
38  Bignum* delta_plus);
39 // Multiplies numerator/denominator so that its values lies in the range 1-10.
40 // Returns decimal_point s.t.
41 // v = numerator'/denominator' * 10^(decimal_point-1)
42 // where numerator' and denominator' are the values of numerator and
43 // denominator after the call to this function.
44 static void FixupMultiply10(int estimated_power, bool is_even,
45  int* decimal_point,
46  Bignum* numerator, Bignum* denominator,
47  Bignum* delta_minus, Bignum* delta_plus);
48 // Generates digits from the left to the right and stops when the generated
49 // digits yield the shortest decimal representation of v.
50 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
51  Bignum* delta_minus, Bignum* delta_plus,
52  bool is_even,
53  Vector<char> buffer, int* length);
54 // Generates 'requested_digits' after the decimal point.
55 static void BignumToFixed(int requested_digits, int* decimal_point,
56  Bignum* numerator, Bignum* denominator,
57  Vector<char>(buffer), int* length);
58 // Generates 'count' digits of numerator/denominator.
59 // Once 'count' digits have been produced rounds the result depending on the
60 // remainder (remainders of exactly .5 round upwards). Might update the
61 // decimal_point when rounding up (for example for 0.9999).
62 static void GenerateCountedDigits(int count, int* decimal_point,
63  Bignum* numerator, Bignum* denominator,
64  Vector<char>(buffer), int* length);
65 
66 
67 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
68  Vector<char> buffer, int* length, int* decimal_point) {
69  DCHECK_GT(v, 0);
70  DCHECK(!Double(v).IsSpecial());
71  uint64_t significand = Double(v).Significand();
72  bool is_even = (significand & 1) == 0;
73  int exponent = Double(v).Exponent();
74  int normalized_exponent = NormalizedExponent(significand, exponent);
75  // estimated_power might be too low by 1.
76  int estimated_power = EstimatePower(normalized_exponent);
77 
78  // Shortcut for Fixed.
79  // The requested digits correspond to the digits after the point. If the
80  // number is much too small, then there is no need in trying to get any
81  // digits.
82  if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
83  buffer[0] = '\0';
84  *length = 0;
85  // Set decimal-point to -requested_digits. This is what Gay does.
86  // Note that it should not have any effect anyways since the string is
87  // empty.
88  *decimal_point = -requested_digits;
89  return;
90  }
91 
92  Bignum numerator;
93  Bignum denominator;
94  Bignum delta_minus;
95  Bignum delta_plus;
96  // Make sure the bignum can grow large enough. The smallest double equals
97  // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
98  // The maximum double is 1.7976931348623157e308 which needs fewer than
99  // 308*4 binary digits.
100  DCHECK_GE(Bignum::kMaxSignificantBits, 324 * 4);
101  bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
102  InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
103  &numerator, &denominator,
104  &delta_minus, &delta_plus);
105  // We now have v = (numerator / denominator) * 10^estimated_power.
106  FixupMultiply10(estimated_power, is_even, decimal_point,
107  &numerator, &denominator,
108  &delta_minus, &delta_plus);
109  // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
110  // 1 <= (numerator + delta_plus) / denominator < 10
111  switch (mode) {
112  case BIGNUM_DTOA_SHORTEST:
113  GenerateShortestDigits(&numerator, &denominator,
114  &delta_minus, &delta_plus,
115  is_even, buffer, length);
116  break;
117  case BIGNUM_DTOA_FIXED:
118  BignumToFixed(requested_digits, decimal_point,
119  &numerator, &denominator,
120  buffer, length);
121  break;
122  case BIGNUM_DTOA_PRECISION:
123  GenerateCountedDigits(requested_digits, decimal_point,
124  &numerator, &denominator,
125  buffer, length);
126  break;
127  default:
128  UNREACHABLE();
129  }
130  buffer[*length] = '\0';
131 }
132 
133 
134 // The procedure starts generating digits from the left to the right and stops
135 // when the generated digits yield the shortest decimal representation of v. A
136 // decimal representation of v is a number lying closer to v than to any other
137 // double, so it converts to v when read.
138 //
139 // This is true if d, the decimal representation, is between m- and m+, the
140 // upper and lower boundaries. d must be strictly between them if !is_even.
141 // m- := (numerator - delta_minus) / denominator
142 // m+ := (numerator + delta_plus) / denominator
143 //
144 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
145 // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
146 // will be produced. This should be the standard precondition.
147 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
148  Bignum* delta_minus, Bignum* delta_plus,
149  bool is_even,
150  Vector<char> buffer, int* length) {
151  // Small optimization: if delta_minus and delta_plus are the same just reuse
152  // one of the two bignums.
153  if (Bignum::Equal(*delta_minus, *delta_plus)) {
154  delta_plus = delta_minus;
155  }
156  *length = 0;
157  while (true) {
158  uint16_t digit;
159  digit = numerator->DivideModuloIntBignum(*denominator);
160  DCHECK_LE(digit, 9); // digit is a uint16_t and therefore always positive.
161  // digit = numerator / denominator (integer division).
162  // numerator = numerator % denominator.
163  buffer[(*length)++] = digit + '0';
164 
165  // Can we stop already?
166  // If the remainder of the division is less than the distance to the lower
167  // boundary we can stop. In this case we simply round down (discarding the
168  // remainder).
169  // Similarly we test if we can round up (using the upper boundary).
170  bool in_delta_room_minus;
171  bool in_delta_room_plus;
172  if (is_even) {
173  in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
174  } else {
175  in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
176  }
177  if (is_even) {
178  in_delta_room_plus =
179  Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
180  } else {
181  in_delta_room_plus =
182  Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
183  }
184  if (!in_delta_room_minus && !in_delta_room_plus) {
185  // Prepare for next iteration.
186  numerator->Times10();
187  delta_minus->Times10();
188  // We optimized delta_plus to be equal to delta_minus (if they share the
189  // same value). So don't multiply delta_plus if they point to the same
190  // object.
191  if (delta_minus != delta_plus) {
192  delta_plus->Times10();
193  }
194  } else if (in_delta_room_minus && in_delta_room_plus) {
195  // Let's see if 2*numerator < denominator.
196  // If yes, then the next digit would be < 5 and we can round down.
197  int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
198  if (compare < 0) {
199  // Remaining digits are less than .5. -> Round down (== do nothing).
200  } else if (compare > 0) {
201  // Remaining digits are more than .5 of denominator. -> Round up.
202  // Note that the last digit could not be a '9' as otherwise the whole
203  // loop would have stopped earlier.
204  // We still have an assert here in case the preconditions were not
205  // satisfied.
206  DCHECK_NE(buffer[(*length) - 1], '9');
207  buffer[(*length) - 1]++;
208  } else {
209  // Halfway case.
210  // TODO(floitsch): need a way to solve half-way cases.
211  // For now let's round towards even (since this is what Gay seems to
212  // do).
213 
214  if ((buffer[(*length) - 1] - '0') % 2 == 0) {
215  // Round down => Do nothing.
216  } else {
217  DCHECK_NE(buffer[(*length) - 1], '9');
218  buffer[(*length) - 1]++;
219  }
220  }
221  return;
222  } else if (in_delta_room_minus) {
223  // Round down (== do nothing).
224  return;
225  } else { // in_delta_room_plus
226  // Round up.
227  // Note again that the last digit could not be '9' since this would have
228  // stopped the loop earlier.
229  // We still have an DCHECK here, in case the preconditions were not
230  // satisfied.
231  DCHECK_NE(buffer[(*length) - 1], '9');
232  buffer[(*length) - 1]++;
233  return;
234  }
235  }
236 }
237 
238 
239 // Let v = numerator / denominator < 10.
240 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
241 // from left to right. Once 'count' digits have been produced we decide wether
242 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
243 // as 9.999999 propagate a carry all the way, and change the
244 // exponent (decimal_point), when rounding upwards.
245 static void GenerateCountedDigits(int count, int* decimal_point,
246  Bignum* numerator, Bignum* denominator,
247  Vector<char>(buffer), int* length) {
248  DCHECK_GE(count, 0);
249  for (int i = 0; i < count - 1; ++i) {
250  uint16_t digit;
251  digit = numerator->DivideModuloIntBignum(*denominator);
252  DCHECK_LE(digit, 9); // digit is a uint16_t and therefore always positive.
253  // digit = numerator / denominator (integer division).
254  // numerator = numerator % denominator.
255  buffer[i] = digit + '0';
256  // Prepare for next iteration.
257  numerator->Times10();
258  }
259  // Generate the last digit.
260  uint16_t digit;
261  digit = numerator->DivideModuloIntBignum(*denominator);
262  if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
263  digit++;
264  }
265  buffer[count - 1] = digit + '0';
266  // Correct bad digits (in case we had a sequence of '9's). Propagate the
267  // carry until we hat a non-'9' or til we reach the first digit.
268  for (int i = count - 1; i > 0; --i) {
269  if (buffer[i] != '0' + 10) break;
270  buffer[i] = '0';
271  buffer[i - 1]++;
272  }
273  if (buffer[0] == '0' + 10) {
274  // Propagate a carry past the top place.
275  buffer[0] = '1';
276  (*decimal_point)++;
277  }
278  *length = count;
279 }
280 
281 
282 // Generates 'requested_digits' after the decimal point. It might omit
283 // trailing '0's. If the input number is too small then no digits at all are
284 // generated (ex.: 2 fixed digits for 0.00001).
285 //
286 // Input verifies: 1 <= (numerator + delta) / denominator < 10.
287 static void BignumToFixed(int requested_digits, int* decimal_point,
288  Bignum* numerator, Bignum* denominator,
289  Vector<char>(buffer), int* length) {
290  // Note that we have to look at more than just the requested_digits, since
291  // a number could be rounded up. Example: v=0.5 with requested_digits=0.
292  // Even though the power of v equals 0 we can't just stop here.
293  if (-(*decimal_point) > requested_digits) {
294  // The number is definitively too small.
295  // Ex: 0.001 with requested_digits == 1.
296  // Set decimal-point to -requested_digits. This is what Gay does.
297  // Note that it should not have any effect anyways since the string is
298  // empty.
299  *decimal_point = -requested_digits;
300  *length = 0;
301  return;
302  } else if (-(*decimal_point) == requested_digits) {
303  // We only need to verify if the number rounds down or up.
304  // Ex: 0.04 and 0.06 with requested_digits == 1.
305  DCHECK(*decimal_point == -requested_digits);
306  // Initially the fraction lies in range (1, 10]. Multiply the denominator
307  // by 10 so that we can compare more easily.
308  denominator->Times10();
309  if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
310  // If the fraction is >= 0.5 then we have to include the rounded
311  // digit.
312  buffer[0] = '1';
313  *length = 1;
314  (*decimal_point)++;
315  } else {
316  // Note that we caught most of similar cases earlier.
317  *length = 0;
318  }
319  return;
320  } else {
321  // The requested digits correspond to the digits after the point.
322  // The variable 'needed_digits' includes the digits before the point.
323  int needed_digits = (*decimal_point) + requested_digits;
324  GenerateCountedDigits(needed_digits, decimal_point,
325  numerator, denominator,
326  buffer, length);
327  }
328 }
329 
330 
331 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
332 // v = f * 2^exponent and 2^52 <= f < 2^53.
333 // v is hence a normalized double with the given exponent. The output is an
334 // approximation for the exponent of the decimal approimation .digits * 10^k.
335 //
336 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
337 // Note: this property holds for v's upper boundary m+ too.
338 // 10^k <= m+ < 10^k+1.
339 // (see explanation below).
340 //
341 // Examples:
342 // EstimatePower(0) => 16
343 // EstimatePower(-52) => 0
344 //
345 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
346 static int EstimatePower(int exponent) {
347  // This function estimates log10 of v where v = f*2^e (with e == exponent).
348  // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
349  // Note that f is bounded by its container size. Let p = 53 (the double's
350  // significand size). Then 2^(p-1) <= f < 2^p.
351  //
352  // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
353  // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
354  // The computed number undershoots by less than 0.631 (when we compute log3
355  // and not log10).
356  //
357  // Optimization: since we only need an approximated result this computation
358  // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
359  // not really measurable, though.
360  //
361  // Since we want to avoid overshooting we decrement by 1e10 so that
362  // floating-point imprecisions don't affect us.
363  //
364  // Explanation for v's boundary m+: the computation takes advantage of
365  // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
366  // (even for denormals where the delta can be much more important).
367 
368  const double k1Log10 = 0.30102999566398114; // 1/lg(10)
369 
370  // For doubles len(f) == 53 (don't forget the hidden bit).
371  const int kSignificandSize = 53;
372  double estimate =
373  std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
374  return static_cast<int>(estimate);
375 }
376 
377 
378 // See comments for InitialScaledStartValues.
379 static void InitialScaledStartValuesPositiveExponent(
380  double v, int estimated_power, bool need_boundary_deltas,
381  Bignum* numerator, Bignum* denominator,
382  Bignum* delta_minus, Bignum* delta_plus) {
383  // A positive exponent implies a positive power.
384  DCHECK_GE(estimated_power, 0);
385  // Since the estimated_power is positive we simply multiply the denominator
386  // by 10^estimated_power.
387 
388  // numerator = v.
389  numerator->AssignUInt64(Double(v).Significand());
390  numerator->ShiftLeft(Double(v).Exponent());
391  // denominator = 10^estimated_power.
392  denominator->AssignPowerUInt16(10, estimated_power);
393 
394  if (need_boundary_deltas) {
395  // Introduce a common denominator so that the deltas to the boundaries are
396  // integers.
397  denominator->ShiftLeft(1);
398  numerator->ShiftLeft(1);
399  // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
400  // denominator (of 2) delta_plus equals 2^e.
401  delta_plus->AssignUInt16(1);
402  delta_plus->ShiftLeft(Double(v).Exponent());
403  // Same for delta_minus (with adjustments below if f == 2^p-1).
404  delta_minus->AssignUInt16(1);
405  delta_minus->ShiftLeft(Double(v).Exponent());
406 
407  // If the significand (without the hidden bit) is 0, then the lower
408  // boundary is closer than just half a ulp (unit in the last place).
409  // There is only one exception: if the next lower number is a denormal then
410  // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
411  // have to test it in the other function where exponent < 0).
412  uint64_t v_bits = Double(v).AsUint64();
413  if ((v_bits & Double::kSignificandMask) == 0) {
414  // The lower boundary is closer at half the distance of "normal" numbers.
415  // Increase the common denominator and adapt all but the delta_minus.
416  denominator->ShiftLeft(1); // *2
417  numerator->ShiftLeft(1); // *2
418  delta_plus->ShiftLeft(1); // *2
419  }
420  }
421 }
422 
423 
424 // See comments for InitialScaledStartValues
425 static void InitialScaledStartValuesNegativeExponentPositivePower(
426  double v, int estimated_power, bool need_boundary_deltas,
427  Bignum* numerator, Bignum* denominator,
428  Bignum* delta_minus, Bignum* delta_plus) {
429  uint64_t significand = Double(v).Significand();
430  int exponent = Double(v).Exponent();
431  // v = f * 2^e with e < 0, and with estimated_power >= 0.
432  // This means that e is close to 0 (have a look at how estimated_power is
433  // computed).
434 
435  // numerator = significand
436  // since v = significand * 2^exponent this is equivalent to
437  // numerator = v * / 2^-exponent
438  numerator->AssignUInt64(significand);
439  // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
440  denominator->AssignPowerUInt16(10, estimated_power);
441  denominator->ShiftLeft(-exponent);
442 
443  if (need_boundary_deltas) {
444  // Introduce a common denominator so that the deltas to the boundaries are
445  // integers.
446  denominator->ShiftLeft(1);
447  numerator->ShiftLeft(1);
448  // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
449  // denominator (of 2) delta_plus equals 2^e.
450  // Given that the denominator already includes v's exponent the distance
451  // to the boundaries is simply 1.
452  delta_plus->AssignUInt16(1);
453  // Same for delta_minus (with adjustments below if f == 2^p-1).
454  delta_minus->AssignUInt16(1);
455 
456  // If the significand (without the hidden bit) is 0, then the lower
457  // boundary is closer than just one ulp (unit in the last place).
458  // There is only one exception: if the next lower number is a denormal
459  // then the distance is 1 ulp. Since the exponent is close to zero
460  // (otherwise estimated_power would have been negative) this cannot happen
461  // here either.
462  uint64_t v_bits = Double(v).AsUint64();
463  if ((v_bits & Double::kSignificandMask) == 0) {
464  // The lower boundary is closer at half the distance of "normal" numbers.
465  // Increase the denominator and adapt all but the delta_minus.
466  denominator->ShiftLeft(1); // *2
467  numerator->ShiftLeft(1); // *2
468  delta_plus->ShiftLeft(1); // *2
469  }
470  }
471 }
472 
473 
474 // See comments for InitialScaledStartValues
475 static void InitialScaledStartValuesNegativeExponentNegativePower(
476  double v, int estimated_power, bool need_boundary_deltas,
477  Bignum* numerator, Bignum* denominator,
478  Bignum* delta_minus, Bignum* delta_plus) {
479  const uint64_t kMinimalNormalizedExponent =
480  V8_2PART_UINT64_C(0x00100000, 00000000);
481  uint64_t significand = Double(v).Significand();
482  int exponent = Double(v).Exponent();
483  // Instead of multiplying the denominator with 10^estimated_power we
484  // multiply all values (numerator and deltas) by 10^-estimated_power.
485 
486  // Use numerator as temporary container for power_ten.
487  Bignum* power_ten = numerator;
488  power_ten->AssignPowerUInt16(10, -estimated_power);
489 
490  if (need_boundary_deltas) {
491  // Since power_ten == numerator we must make a copy of 10^estimated_power
492  // before we complete the computation of the numerator.
493  // delta_plus = delta_minus = 10^estimated_power
494  delta_plus->AssignBignum(*power_ten);
495  delta_minus->AssignBignum(*power_ten);
496  }
497 
498  // numerator = significand * 2 * 10^-estimated_power
499  // since v = significand * 2^exponent this is equivalent to
500  // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
501  // Remember: numerator has been abused as power_ten. So no need to assign it
502  // to itself.
503  DCHECK(numerator == power_ten);
504  numerator->MultiplyByUInt64(significand);
505 
506  // denominator = 2 * 2^-exponent with exponent < 0.
507  denominator->AssignUInt16(1);
508  denominator->ShiftLeft(-exponent);
509 
510  if (need_boundary_deltas) {
511  // Introduce a common denominator so that the deltas to the boundaries are
512  // integers.
513  numerator->ShiftLeft(1);
514  denominator->ShiftLeft(1);
515  // With this shift the boundaries have their correct value, since
516  // delta_plus = 10^-estimated_power, and
517  // delta_minus = 10^-estimated_power.
518  // These assignments have been done earlier.
519 
520  // The special case where the lower boundary is twice as close.
521  // This time we have to look out for the exception too.
522  uint64_t v_bits = Double(v).AsUint64();
523  if ((v_bits & Double::kSignificandMask) == 0 &&
524  // The only exception where a significand == 0 has its boundaries at
525  // "normal" distances:
526  (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
527  numerator->ShiftLeft(1); // *2
528  denominator->ShiftLeft(1); // *2
529  delta_plus->ShiftLeft(1); // *2
530  }
531  }
532 }
533 
534 
535 // Let v = significand * 2^exponent.
536 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
537 // and denominator. The functions GenerateShortestDigits and
538 // GenerateCountedDigits will then convert this ratio to its decimal
539 // representation d, with the required accuracy.
540 // Then d * 10^estimated_power is the representation of v.
541 // (Note: the fraction and the estimated_power might get adjusted before
542 // generating the decimal representation.)
543 //
544 // The initial start values consist of:
545 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
546 // - a scaled (common) denominator.
547 // optionally (used by GenerateShortestDigits to decide if it has the shortest
548 // decimal converting back to v):
549 // - v - m-: the distance to the lower boundary.
550 // - m+ - v: the distance to the upper boundary.
551 //
552 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
553 //
554 // Let ep == estimated_power, then the returned values will satisfy:
555 // v / 10^ep = numerator / denominator.
556 // v's boundarys m- and m+:
557 // m- / 10^ep == v / 10^ep - delta_minus / denominator
558 // m+ / 10^ep == v / 10^ep + delta_plus / denominator
559 // Or in other words:
560 // m- == v - delta_minus * 10^ep / denominator;
561 // m+ == v + delta_plus * 10^ep / denominator;
562 //
563 // Since 10^(k-1) <= v < 10^k (with k == estimated_power)
564 // or 10^k <= v < 10^(k+1)
565 // we then have 0.1 <= numerator/denominator < 1
566 // or 1 <= numerator/denominator < 10
567 //
568 // It is then easy to kickstart the digit-generation routine.
569 //
570 // The boundary-deltas are only filled if need_boundary_deltas is set.
571 static void InitialScaledStartValues(double v,
572  int estimated_power,
573  bool need_boundary_deltas,
574  Bignum* numerator,
575  Bignum* denominator,
576  Bignum* delta_minus,
577  Bignum* delta_plus) {
578  if (Double(v).Exponent() >= 0) {
579  InitialScaledStartValuesPositiveExponent(
580  v, estimated_power, need_boundary_deltas,
581  numerator, denominator, delta_minus, delta_plus);
582  } else if (estimated_power >= 0) {
583  InitialScaledStartValuesNegativeExponentPositivePower(
584  v, estimated_power, need_boundary_deltas,
585  numerator, denominator, delta_minus, delta_plus);
586  } else {
587  InitialScaledStartValuesNegativeExponentNegativePower(
588  v, estimated_power, need_boundary_deltas,
589  numerator, denominator, delta_minus, delta_plus);
590  }
591 }
592 
593 
594 // This routine multiplies numerator/denominator so that its values lies in the
595 // range 1-10. That is after a call to this function we have:
596 // 1 <= (numerator + delta_plus) /denominator < 10.
597 // Let numerator the input before modification and numerator' the argument
598 // after modification, then the output-parameter decimal_point is such that
599 // numerator / denominator * 10^estimated_power ==
600 // numerator' / denominator' * 10^(decimal_point - 1)
601 // In some cases estimated_power was too low, and this is already the case. We
602 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
603 // estimated_power) but do not touch the numerator or denominator.
604 // Otherwise the routine multiplies the numerator and the deltas by 10.
605 static void FixupMultiply10(int estimated_power, bool is_even,
606  int* decimal_point,
607  Bignum* numerator, Bignum* denominator,
608  Bignum* delta_minus, Bignum* delta_plus) {
609  bool in_range;
610  if (is_even) {
611  // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
612  // are rounded to the closest floating-point number with even significand.
613  in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
614  } else {
615  in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
616  }
617  if (in_range) {
618  // Since numerator + delta_plus >= denominator we already have
619  // 1 <= numerator/denominator < 10. Simply update the estimated_power.
620  *decimal_point = estimated_power + 1;
621  } else {
622  *decimal_point = estimated_power;
623  numerator->Times10();
624  if (Bignum::Equal(*delta_minus, *delta_plus)) {
625  delta_minus->Times10();
626  delta_plus->AssignBignum(*delta_minus);
627  } else {
628  delta_minus->Times10();
629  delta_plus->Times10();
630  }
631  }
632 }
633 
634 } // namespace internal
635 } // namespace v8
Definition: libplatform.h:13