V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
assembler-s390-inl.h
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36 
37 #ifndef V8_S390_ASSEMBLER_S390_INL_H_
38 #define V8_S390_ASSEMBLER_S390_INL_H_
39 
40 #include "src/s390/assembler-s390.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 #include "src/objects-inl.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 bool CpuFeatures::SupportsOptimizer() { return true; }
50 
51 bool CpuFeatures::SupportsWasmSimd128() { return false; }
52 
53 void RelocInfo::apply(intptr_t delta) {
54  // Absolute code pointer inside code object moves with the code object.
55  if (IsInternalReference(rmode_)) {
56  // Jump table entry
57  Address target = Memory<Address>(pc_);
58  Memory<Address>(pc_) = target + delta;
59  } else if (IsCodeTarget(rmode_)) {
60  SixByteInstr instr =
61  Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_));
62  int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2 // halfwords
63  - static_cast<int32_t>(delta);
64  instr >>= 32; // Clear the 4-byte displacement field.
65  instr <<= 32;
66  instr |= static_cast<uint32_t>(dis / 2);
67  Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_),
68  instr);
69  } else {
70  // mov sequence
71  DCHECK(IsInternalReferenceEncoded(rmode_));
72  Address target = Assembler::target_address_at(pc_, constant_pool_);
73  Assembler::set_target_address_at(pc_, constant_pool_, target + delta,
74  SKIP_ICACHE_FLUSH);
75  }
76 }
77 
78 Address RelocInfo::target_internal_reference() {
79  if (IsInternalReference(rmode_)) {
80  // Jump table entry
81  return Memory<Address>(pc_);
82  } else {
83  // mov sequence
84  DCHECK(IsInternalReferenceEncoded(rmode_));
85  return Assembler::target_address_at(pc_, constant_pool_);
86  }
87 }
88 
89 Address RelocInfo::target_internal_reference_address() {
90  DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
91  return pc_;
92 }
93 
94 Address RelocInfo::target_address() {
95  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
96  return Assembler::target_address_at(pc_, constant_pool_);
97 }
98 
99 Address RelocInfo::target_address_address() {
100  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) ||
101  IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
102  IsOffHeapTarget(rmode_));
103 
104  // Read the address of the word containing the target_address in an
105  // instruction stream.
106  // The only architecture-independent user of this function is the serializer.
107  // The serializer uses it to find out how many raw bytes of instruction to
108  // output before the next target.
109  // For an instruction like LIS/ORI where the target bits are mixed into the
110  // instruction bits, the size of the target will be zero, indicating that the
111  // serializer should not step forward in memory after a target is resolved
112  // and written.
113  return pc_;
114 }
115 
116 Address RelocInfo::constant_pool_entry_address() {
117  UNREACHABLE();
118 }
119 
120 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
121 
122 Address Assembler::target_address_from_return_address(Address pc) {
123  // Returns the address of the call target from the return address that will
124  // be returned to after a call.
125  // Sequence is:
126  // BRASL r14, RI
127  return pc - kCallTargetAddressOffset;
128 }
129 
130 Address Assembler::return_address_from_call_start(Address pc) {
131  // Sequence is:
132  // BRASL r14, RI
133  return pc + kCallTargetAddressOffset;
134 }
135 
136 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
137  SixByteInstr instr =
138  Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
139  int index = instr & 0xFFFFFFFF;
140  return GetCodeTarget(index);
141 }
142 
143 HeapObject* RelocInfo::target_object() {
144  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
145  return HeapObject::cast(reinterpret_cast<Object*>(
146  Assembler::target_address_at(pc_, constant_pool_)));
147 }
148 
149 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
150  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
151  if (rmode_ == EMBEDDED_OBJECT) {
152  return Handle<HeapObject>(reinterpret_cast<Address*>(
153  Assembler::target_address_at(pc_, constant_pool_)));
154  } else {
155  return Handle<HeapObject>::cast(origin->code_target_object_handle_at(pc_));
156  }
157 }
158 
159 void RelocInfo::set_target_object(Heap* heap, HeapObject* target,
160  WriteBarrierMode write_barrier_mode,
161  ICacheFlushMode icache_flush_mode) {
162  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
163  Assembler::set_target_address_at(pc_, constant_pool_,
164  reinterpret_cast<Address>(target),
165  icache_flush_mode);
166  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) {
167  WriteBarrierForCode(host(), this, target);
168  }
169 }
170 
171 Address RelocInfo::target_external_reference() {
172  DCHECK(rmode_ == EXTERNAL_REFERENCE);
173  return Assembler::target_address_at(pc_, constant_pool_);
174 }
175 
176 void RelocInfo::set_target_external_reference(
177  Address target, ICacheFlushMode icache_flush_mode) {
178  DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
179  Assembler::set_target_address_at(pc_, constant_pool_, target,
180  icache_flush_mode);
181 }
182 
183 Address RelocInfo::target_runtime_entry(Assembler* origin) {
184  DCHECK(IsRuntimeEntry(rmode_));
185  return target_address();
186 }
187 
188 Address RelocInfo::target_off_heap_target() {
189  DCHECK(IsOffHeapTarget(rmode_));
190  return Assembler::target_address_at(pc_, constant_pool_);
191 }
192 
193 void RelocInfo::set_target_runtime_entry(Address target,
194  WriteBarrierMode write_barrier_mode,
195  ICacheFlushMode icache_flush_mode) {
196  DCHECK(IsRuntimeEntry(rmode_));
197  if (target_address() != target)
198  set_target_address(target, write_barrier_mode, icache_flush_mode);
199 }
200 
201 void RelocInfo::WipeOut() {
202  DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
203  IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
204  IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
205  IsOffHeapTarget(rmode_));
206  if (IsInternalReference(rmode_)) {
207  // Jump table entry
208  Memory<Address>(pc_) = kNullAddress;
209  } else if (IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)) {
210  // mov sequence
211  // Currently used only by deserializer, no need to flush.
212  Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress,
213  SKIP_ICACHE_FLUSH);
214  } else {
215  Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
216  }
217 }
218 
219 template <typename ObjectVisitor>
220 void RelocInfo::Visit(ObjectVisitor* visitor) {
221  RelocInfo::Mode mode = rmode();
222  if (mode == RelocInfo::EMBEDDED_OBJECT) {
223  visitor->VisitEmbeddedPointer(host(), this);
224  } else if (RelocInfo::IsCodeTargetMode(mode)) {
225  visitor->VisitCodeTarget(host(), this);
226  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
227  visitor->VisitExternalReference(host(), this);
228  } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
229  visitor->VisitInternalReference(host(), this);
230  } else if (IsRuntimeEntry(mode)) {
231  visitor->VisitRuntimeEntry(host(), this);
232  } else if (RelocInfo::IsOffHeapTarget(mode)) {
233  visitor->VisitOffHeapTarget(host(), this);
234  }
235 }
236 
237 // Operand constructors
238 Operand::Operand(Register rm) : rm_(rm), rmode_(RelocInfo::NONE) {}
239 
240 // Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF
241 Address Assembler::target_address_at(Address pc, Address constant_pool) {
242  // S390 Instruction!
243  // We want to check for instructions generated by Asm::mov()
244  Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
245  SixByteInstr instr_1 =
246  Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
247 
248  if (BRASL == op1 || BRCL == op1) {
249  int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2;
250  return pc + dis;
251  }
252 
253 #if V8_TARGET_ARCH_S390X
254  int instr1_length =
255  Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
256  Opcode op2 = Instruction::S390OpcodeValue(
257  reinterpret_cast<const byte*>(pc + instr1_length));
258  SixByteInstr instr_2 = Instruction::InstructionBits(
259  reinterpret_cast<const byte*>(pc + instr1_length));
260  // IIHF for hi_32, IILF for lo_32
261  if (IIHF == op1 && IILF == op2) {
262  return static_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) |
263  ((instr_2 & 0xFFFFFFFF)));
264  }
265 #else
266  // IILF loads 32-bits
267  if (IILF == op1 || CFI == op1) {
268  return static_cast<Address>((instr_1 & 0xFFFFFFFF));
269  }
270 #endif
271 
272  UNIMPLEMENTED();
273  return 0;
274 }
275 
276 // This sets the branch destination (which gets loaded at the call address).
277 // This is for calls and branches within generated code. The serializer
278 // has already deserialized the mov instructions etc.
279 // There is a FIXED_SEQUENCE assumption here
280 void Assembler::deserialization_set_special_target_at(
281  Address instruction_payload, Code code, Address target) {
282  set_target_address_at(instruction_payload,
283  code ? code->constant_pool() : kNullAddress, target);
284 }
285 
286 int Assembler::deserialization_special_target_size(
287  Address instruction_payload) {
288  return kSpecialTargetSize;
289 }
290 
291 void Assembler::deserialization_set_target_internal_reference_at(
292  Address pc, Address target, RelocInfo::Mode mode) {
293  if (RelocInfo::IsInternalReferenceEncoded(mode)) {
294  set_target_address_at(pc, kNullAddress, target, SKIP_ICACHE_FLUSH);
295  } else {
296  Memory<Address>(pc) = target;
297  }
298 }
299 
300 // This code assumes the FIXED_SEQUENCE of IIHF/IILF
301 void Assembler::set_target_address_at(Address pc, Address constant_pool,
302  Address target,
303  ICacheFlushMode icache_flush_mode) {
304  // Check for instructions generated by Asm::mov()
305  Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
306  SixByteInstr instr_1 =
307  Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
308  bool patched = false;
309 
310  if (BRASL == op1 || BRCL == op1) {
311  instr_1 >>= 32; // Zero out the lower 32-bits
312  instr_1 <<= 32;
313  int32_t halfwords = (target - pc) / 2; // number of halfwords
314  instr_1 |= static_cast<uint32_t>(halfwords);
315  Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
316  instr_1);
317  if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
318  Assembler::FlushICache(pc, 6);
319  }
320  patched = true;
321  } else {
322 #if V8_TARGET_ARCH_S390X
323  int instr1_length =
324  Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
325  Opcode op2 = Instruction::S390OpcodeValue(
326  reinterpret_cast<const byte*>(pc + instr1_length));
327  SixByteInstr instr_2 = Instruction::InstructionBits(
328  reinterpret_cast<const byte*>(pc + instr1_length));
329  // IIHF for hi_32, IILF for lo_32
330  if (IIHF == op1 && IILF == op2) {
331  // IIHF
332  instr_1 >>= 32; // Zero out the lower 32-bits
333  instr_1 <<= 32;
334  instr_1 |= reinterpret_cast<uint64_t>(target) >> 32;
335 
336  Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
337  instr_1);
338 
339  // IILF
340  instr_2 >>= 32;
341  instr_2 <<= 32;
342  instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF;
343 
344  Instruction::SetInstructionBits<SixByteInstr>(
345  reinterpret_cast<byte*>(pc + instr1_length), instr_2);
346  if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
347  Assembler::FlushICache(pc, 12);
348  }
349  patched = true;
350  }
351 #else
352  // IILF loads 32-bits
353  if (IILF == op1 || CFI == op1) {
354  instr_1 >>= 32; // Zero out the lower 32-bits
355  instr_1 <<= 32;
356  instr_1 |= reinterpret_cast<uint32_t>(target);
357 
358  Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
359  instr_1);
360  if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
361  Assembler::FlushICache(pc, 6);
362  }
363  patched = true;
364  }
365 #endif
366  }
367  if (!patched) UNREACHABLE();
368 }
369 
370 } // namespace internal
371 } // namespace v8
372 
373 #endif // V8_S390_ASSEMBLER_S390_INL_H_
Definition: libplatform.h:13