V8 API Reference, 7.2.502.16 (for Deno 0.2.4)
assembler-mips64-inl.h
1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 #ifndef V8_MIPS64_ASSEMBLER_MIPS64_INL_H_
37 #define V8_MIPS64_ASSEMBLER_MIPS64_INL_H_
38 
39 #include "src/mips64/assembler-mips64.h"
40 
41 #include "src/assembler.h"
42 #include "src/debug/debug.h"
43 #include "src/objects-inl.h"
44 
45 namespace v8 {
46 namespace internal {
47 
48 bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); }
49 
50 bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); }
51 
52 // -----------------------------------------------------------------------------
53 // Operand and MemOperand.
54 
55 bool Operand::is_reg() const {
56  return rm_.is_valid();
57 }
58 
59 int64_t Operand::immediate() const {
60  DCHECK(!is_reg());
61  DCHECK(!IsHeapObjectRequest());
62  return value_.immediate;
63 }
64 
65 // -----------------------------------------------------------------------------
66 // RelocInfo.
67 
68 void RelocInfo::apply(intptr_t delta) {
69  if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
70  // Absolute code pointer inside code object moves with the code object.
71  Assembler::RelocateInternalReference(rmode_, pc_, delta);
72  }
73 }
74 
75 
76 Address RelocInfo::target_address() {
77  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
78  return Assembler::target_address_at(pc_, constant_pool_);
79 }
80 
81 Address RelocInfo::target_address_address() {
82  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) ||
83  IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
84  IsOffHeapTarget(rmode_));
85  // Read the address of the word containing the target_address in an
86  // instruction stream.
87  // The only architecture-independent user of this function is the serializer.
88  // The serializer uses it to find out how many raw bytes of instruction to
89  // output before the next target.
90  // For an instruction like LUI/ORI where the target bits are mixed into the
91  // instruction bits, the size of the target will be zero, indicating that the
92  // serializer should not step forward in memory after a target is resolved
93  // and written. In this case the target_address_address function should
94  // return the end of the instructions to be patched, allowing the
95  // deserializer to deserialize the instructions as raw bytes and put them in
96  // place, ready to be patched with the target. After jump optimization,
97  // that is the address of the instruction that follows J/JAL/JR/JALR
98  // instruction.
99  return pc_ + Assembler::kInstructionsFor64BitConstant * kInstrSize;
100 }
101 
102 
103 Address RelocInfo::constant_pool_entry_address() {
104  UNREACHABLE();
105 }
106 
107 
108 int RelocInfo::target_address_size() {
109  return Assembler::kSpecialTargetSize;
110 }
111 
112 Address Assembler::target_address_from_return_address(Address pc) {
113  return pc - kCallTargetAddressOffset;
114 }
115 
116 void Assembler::deserialization_set_special_target_at(
117  Address instruction_payload, Code code, Address target) {
118  set_target_address_at(
119  instruction_payload - kInstructionsFor64BitConstant * kInstrSize,
120  code ? code->constant_pool() : kNullAddress, target);
121 }
122 
123 int Assembler::deserialization_special_target_size(
124  Address instruction_payload) {
125  return kSpecialTargetSize;
126 }
127 
128 void Assembler::set_target_internal_reference_encoded_at(Address pc,
129  Address target) {
130  // Encoded internal references are j/jal instructions.
131  Instr instr = Assembler::instr_at(pc + 0 * kInstrSize);
132 
133  uint64_t imm28 = target & static_cast<uint64_t>(kImm28Mask);
134 
135  instr &= ~kImm26Mask;
136  uint64_t imm26 = imm28 >> 2;
137  DCHECK(is_uint26(imm26));
138 
139  instr_at_put(pc, instr | (imm26 & kImm26Mask));
140  // Currently used only by deserializer, and all code will be flushed
141  // after complete deserialization, no need to flush on each reference.
142 }
143 
144 void Assembler::deserialization_set_target_internal_reference_at(
145  Address pc, Address target, RelocInfo::Mode mode) {
146  if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
147  DCHECK(IsJ(instr_at(pc)));
148  set_target_internal_reference_encoded_at(pc, target);
149  } else {
150  DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
151  Memory<Address>(pc) = target;
152  }
153 }
154 
155 HeapObject* RelocInfo::target_object() {
156  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
157  return HeapObject::cast(reinterpret_cast<Object*>(
158  Assembler::target_address_at(pc_, constant_pool_)));
159 }
160 
161 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
162  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
163  return Handle<HeapObject>(reinterpret_cast<Address*>(
164  Assembler::target_address_at(pc_, constant_pool_)));
165 }
166 
167 void RelocInfo::set_target_object(Heap* heap, HeapObject* target,
168  WriteBarrierMode write_barrier_mode,
169  ICacheFlushMode icache_flush_mode) {
170  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
171  Assembler::set_target_address_at(pc_, constant_pool_,
172  reinterpret_cast<Address>(target),
173  icache_flush_mode);
174  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) {
175  WriteBarrierForCode(host(), this, target);
176  }
177 }
178 
179 
180 Address RelocInfo::target_external_reference() {
181  DCHECK(rmode_ == EXTERNAL_REFERENCE);
182  return Assembler::target_address_at(pc_, constant_pool_);
183 }
184 
185 void RelocInfo::set_target_external_reference(
186  Address target, ICacheFlushMode icache_flush_mode) {
187  DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
188  Assembler::set_target_address_at(pc_, constant_pool_, target,
189  icache_flush_mode);
190 }
191 
192 Address RelocInfo::target_internal_reference() {
193  if (rmode_ == INTERNAL_REFERENCE) {
194  return Memory<Address>(pc_);
195  } else {
196  // Encoded internal references are j/jal instructions.
197  DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
198  Instr instr = Assembler::instr_at(pc_ + 0 * kInstrSize);
199  instr &= kImm26Mask;
200  uint64_t imm28 = instr << 2;
201  uint64_t segment = pc_ & ~static_cast<uint64_t>(kImm28Mask);
202  return static_cast<Address>(segment | imm28);
203  }
204 }
205 
206 
207 Address RelocInfo::target_internal_reference_address() {
208  DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
209  return pc_;
210 }
211 
212 Address RelocInfo::target_runtime_entry(Assembler* origin) {
213  DCHECK(IsRuntimeEntry(rmode_));
214  return target_address();
215 }
216 
217 void RelocInfo::set_target_runtime_entry(Address target,
218  WriteBarrierMode write_barrier_mode,
219  ICacheFlushMode icache_flush_mode) {
220  DCHECK(IsRuntimeEntry(rmode_));
221  if (target_address() != target)
222  set_target_address(target, write_barrier_mode, icache_flush_mode);
223 }
224 
225 Address RelocInfo::target_off_heap_target() {
226  DCHECK(IsOffHeapTarget(rmode_));
227  return Assembler::target_address_at(pc_, constant_pool_);
228 }
229 
230 void RelocInfo::WipeOut() {
231  DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
232  IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
233  IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
234  IsOffHeapTarget(rmode_));
235  if (IsInternalReference(rmode_)) {
236  Memory<Address>(pc_) = kNullAddress;
237  } else if (IsInternalReferenceEncoded(rmode_)) {
238  Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress);
239  } else {
240  Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
241  }
242 }
243 
244 template <typename ObjectVisitor>
245 void RelocInfo::Visit(ObjectVisitor* visitor) {
246  RelocInfo::Mode mode = rmode();
247  if (mode == RelocInfo::EMBEDDED_OBJECT) {
248  visitor->VisitEmbeddedPointer(host(), this);
249  } else if (RelocInfo::IsCodeTargetMode(mode)) {
250  visitor->VisitCodeTarget(host(), this);
251  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
252  visitor->VisitExternalReference(host(), this);
253  } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
254  mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
255  visitor->VisitInternalReference(host(), this);
256  } else if (RelocInfo::IsRuntimeEntry(mode)) {
257  visitor->VisitRuntimeEntry(host(), this);
258  } else if (RelocInfo::IsOffHeapTarget(mode)) {
259  visitor->VisitOffHeapTarget(host(), this);
260  }
261 }
262 
263 // -----------------------------------------------------------------------------
264 // Assembler.
265 
266 
267 void Assembler::CheckBuffer() {
268  if (buffer_space() <= kGap) {
269  GrowBuffer();
270  }
271 }
272 
273 
274 void Assembler::CheckForEmitInForbiddenSlot() {
275  if (!is_buffer_growth_blocked()) {
276  CheckBuffer();
277  }
278  if (IsPrevInstrCompactBranch()) {
279  // Nop instruction to precede a CTI in forbidden slot:
280  Instr nop = SPECIAL | SLL;
281  *reinterpret_cast<Instr*>(pc_) = nop;
282  pc_ += kInstrSize;
283 
284  ClearCompactBranchState();
285  }
286 }
287 
288 
289 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
290  if (IsPrevInstrCompactBranch()) {
291  if (Instruction::IsForbiddenAfterBranchInstr(x)) {
292  // Nop instruction to precede a CTI in forbidden slot:
293  Instr nop = SPECIAL | SLL;
294  *reinterpret_cast<Instr*>(pc_) = nop;
295  pc_ += kInstrSize;
296  }
297  ClearCompactBranchState();
298  }
299  *reinterpret_cast<Instr*>(pc_) = x;
300  pc_ += kInstrSize;
301  if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
302  EmittedCompactBranchInstruction();
303  }
304  CheckTrampolinePoolQuick();
305 }
306 
307 template <>
308 inline void Assembler::EmitHelper(uint8_t x);
309 
310 template <typename T>
311 void Assembler::EmitHelper(T x) {
312  *reinterpret_cast<T*>(pc_) = x;
313  pc_ += sizeof(x);
314  CheckTrampolinePoolQuick();
315 }
316 
317 template <>
318 void Assembler::EmitHelper(uint8_t x) {
319  *reinterpret_cast<uint8_t*>(pc_) = x;
320  pc_ += sizeof(x);
321  if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
322  CheckTrampolinePoolQuick();
323  }
324 }
325 
326 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
327  if (!is_buffer_growth_blocked()) {
328  CheckBuffer();
329  }
330  EmitHelper(x, is_compact_branch);
331 }
332 
333 
334 void Assembler::emit(uint64_t data) {
335  CheckForEmitInForbiddenSlot();
336  EmitHelper(data);
337 }
338 
339 EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
340 
341 } // namespace internal
342 } // namespace v8
343 
344 #endif // V8_MIPS64_ASSEMBLER_MIPS64_INL_H_
Definition: libplatform.h:13